
Operating�System�Support�for�
Multi-Tiered�Memory�

(A�Case�Study�of�Intel’s�Optane�DCPMM)

Jeongseob�Ahn
E-mail:�jsahn@ajou.ac.kr
Web:�https://jeongseob.github.io

mailto:jsahn@ajou.ac.kr
https://jeongseob.github.io/

In�this�talk...

• Exploring�the�Design�Space�of�Page�Management�for�Multi-Tiered�Memory�
Systems
• Jonghyeon Kim,�Wonkyo Choe,�and Jeongseob�Ahn
• USENIX�Annual�Technical�Conference�(ATC),�July�2021

• A�Study�of�Memory�Placement�on�Hardware-assisted�Tiered�Memory�Systems
• Wonkyo Choe,�Jonghyeon Kim,�and Jeongseob�Ahn
• IEEE�Computer�Architecture�Letters�(CAL),�19(2),�July-December�2020

Artifact�available�at�https://github.com/csl-ajou/AutoTiering

https://github.com/csl-ajou/AutoTiering

Data Tiering in Heterogeneous Memory Systems

Subramanya R Dulloor1,2 Amitabha Roy1 Zheguang Zhao3 Narayanan Sundaram1

Nadathur Satish1 Rajesh Sankaran1 Jeff Jackson1 Karsten Schwan2

1Intel Labs, 2Georgia Institute of Technology, 3Brown University

Abstract

Memory-based data center applications require increasingly
large memory capacities, but face the challenges posed by
the inherent difficulties in scaling DRAM and also the cost of
DRAM. Future systems are attempting to address these de-
mands with heterogeneous memory architectures coupling
DRAM with high capacity, low cost, but also lower per-
formance, non-volatile memories (NVM) such as PCM and
RRAM. A key usage model intended for NVM is as cheaper
high capacity volatile memory. Data center operators are
bound to ask whether this model for the usage of NVM
to replace the majority of DRAM memory leads to a large
slowdown in their applications? It is crucial to answer this
question because a large performance impact will be an im-
pediment to the adoption of such systems.

This paper presents a thorough study of representative ap-
plications – including a key-value store (MemC3), an in-
memory database (VoltDB), and a graph analytics frame-
work (GraphMat) – on a platform that is capable of emu-
lating a mix of memory technologies. Our conclusions are
that it is indeed possible to use a mix of a small amount
of fast DRAM and large amounts of slower NVM without
a proportional impact to an application’s performance. The
caveat is that this result can only be achieved through careful
placement of data structures. The contribution of this paper
is the design and implementation of a set of libraries and au-
tomatic tools that enables programmers to achieve optimal
data placement with minimal effort on their part.

With such guided placement and with DRAM constitut-
ing only 6% of the total memory footprint for GraphMat
and 25% for VoltDB and MemC3 (remaining memory is
NVM with 4⇥ higher latency and 8⇥ lower bandwidth than
DRAM), we show that our target applications demonstrate
only a 13% to 40% slowdown. Without guided placement,

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

EuroSys ’16 April 18-21, 2016, London, United Kingdom
Copyright c� 2016 ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2901318.2901344

Parameter DDR-DRAM NVM
Capacity per CPU 100s of GBs Terabytes
Read Latency 1⇥ 2⇥ to 4⇥
Write bandwidth 1⇥ 1

8⇥ to 1
4⇥

Estimated cost 5⇥ 1⇥
Endurance 1016 106 to 108

Table 1: Comparison of new memory technologies [4, 46].
NVM technologies include PCM and RRAM [4, 46]. Cost
is derived from the estimates for PCM based SSDs in [33].
Since writes to write-back cacheable memory are posted, the
effect of NVM’s slower writes is lower bandwidth to NVM.
For reads, latency is the critical metric.

these applications see, in the worst case, 1.5⇥ to 5.9⇥
slowdown on the same configuration. Based on a realis-
tic assumption that NVM will be 5⇥ cheaper (per bit) than
DRAM, this hybrid solution also results in 2⇥ to 2.8⇥ better
performance/$ than a DRAM-only system.

1. Introduction

Data center applications like key-value stores [21, 45], in-
memory databases [15], and data analytics [29, 52] are being
used to handle exponentially growing datasets but cannot
tolerate the performance degradation caused by spilling their
workloads to disk. On the other hand, DRAM density (and
cost) is not scaling due to physical limitations [36, 46],
meaning that continuing to fit growing datasets in DRAM
will be unviable in the future.

To address this challenge, industry is exploring new non-
volatile memory technologies (or NVM) [6, 30, 46]. These
memory technologies are positioned between DRAM and
secondary storage (such as NAND flash), both in terms of
performance and cost. Table 1 quantifies this tradeoff. NVM
provides approximately 5⇥ the capacity at the same cost
as DRAM for less than an order of magnitude reduction
in performance (up to 4⇥ higher latency and 8⇥ lower
bandwidth).

The likely deployment of NVM is in systems that have a
mix of DRAM and NVM. Most of the memory in such sys-
tems will be NVM to exploit their cost and scaling benefits,
with a small fraction of the total memory being composed
of DRAM. Application developers and data center operators

Software-De�ned Far Memory in
Warehouse-Scale Computers

Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw Burny,
Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid, Greg Thelen,

Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan
{andreslc,junwhan,suleiman,nehaagarwal,rburny,shakeelb,jichuan,

ashwinch,dengnan,junaids,gthelen,kyurtsever,yuzhao,parthas}@google.com
Google

Abstract
Increasing memory demand and slowdown in technology
scaling pose important challenges to total cost of ownership
(TCO) of warehouse-scale computers (WSCs). One promising
idea to reduce the memory TCO is to add a cheaper, but
slower, “far memory” tier and use it to store infrequently
accessed (or cold) data. However, introducing a far memory
tier brings new challenges around dynamically responding
to workload diversity and churn, minimizing stranding of
capacity, and addressing brown�eld (legacy) deployments.

We present a novel software-de�ned approach to far mem-
ory that proactively compresses cold memory pages to e�ec-
tively create a far memory tier in software. Our end-to-end
system design encompasses new methods to de�ne perfor-
mance service-level objectives (SLOs), a mechanism to iden-
tify cold memory pages while meeting the SLO, and our
implementation in the OS kernel and node agent. Addition-
ally, we design learning-based autotuning to periodically
adapt our design to �eet-wide changes without a human in
the loop. Our system has been successfully deployed across
Google’s WSC since 2016, serving thousands of production
services. Our software-de�ned far memory is signi�cantly
cheaper (67% or higher memory cost reduction) at relatively
good access speeds (6 �s) and allows us to store a signi�-
cant fraction of infrequently accessed data (on average, 20%),
translating to signi�cant TCO savings at warehouse scale.

CCS Concepts • Computer systems organization →
Distributed architectures; • Software and its engineer-
ing→Memory management.

Keywords cold data, far memory, machine learning, mem-
ory, warehouse-scale computers, zswap

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6240-5/19/04.
h�ps://doi.org/10.1145/3297858.3304053

ACM Reference Format:
Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agar-
wal, Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chau-
gule, NanDeng, Junaid Shahid, Greg Thelen, Kamil Adam Yurtsever,
Yu Zhao, and Parthasarathy Ranganathan. 2019. Software-De�ned
Far Memory in Warehouse-Scale Computers. In 2019 Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS ’19), April 13–17, 2019, Providence, RI, USA. ACM, New York,
NY, USA, 14 pages. h�ps://doi.org/10.1145/3297858.3304053

1 Introduction
E�ectively scaling out awarehouse-scale computer (WSC) [7]
requires that all resource types be scaled in a balanced man-
ner, so that the overall resource ratios between compute,
memory, storage, and networking can satisfy the aggregate
workload requirements. Failing to scale one resource type
causes the others to be stranded, hurting the cost per perfor-
mance of the entire WSC. Consequently, scaling out WSCs
is often limited by the components that have the weakest
scaling behavior in terms of both performance and cost ef-
fectiveness.

In recent years, DRAM has become a critical bottleneck for
scaling the WSCs. The slowdown of device-level scaling (the
end of Moore’s law [35]) prevents the reduction in cost per
GB of DRAM [25, 27]. At the same time, the prevalence of in-
memory computing, particularly for big-data workloads, has
caused an explosive growth in DRAM demand. These two
trends have resulted in a global DRAM supply shortage in
recent years, posing serious challenges to the cost-e�ective
scaling of WSCs.
One promising direction that has been previously pro-

posed to reduce the cost of memory ownership is the intro-
duction of second-tier memory or far memory. Far memory
is a tier between DRAM and Flash that has lower cost per GB
than DRAM and higher performance than Flash. By intro-
ducing far memory into the memory hierarchy and storing
infrequently accessed (or cold) data into far memory, the sys-
tem can perform the same jobs with a lower DRAM capacity
or pack more jobs to each machine, both of which reduce
the total cost of ownership (TCO).

Session: VM/Memory ASPLOS’19, April 13–17, 2019, Providence, RI, USA

317

Large-scale�memory�systems

Nimble Page Management for Tiered
Memory Systems

Zi Yan
Rutgers University & NVIDIA

ziy@nvidia.com

Daniel Lustig
NVIDIA

dlustig@nvidia.com

David Nellans
NVIDIA

dnellans@nvidia.com

Abhishek Bhattacharjee
Yale University

abhishek@cs.yale.edu

Abstract
Software-controlled heterogeneous memory systems have
the potential to increase the performance and cost e�ciency
of computing systems. However they can only deliver on this
promise if supported by e�cient page management policies
and mechanisms within the operating system (OS). Current
OS implementations do not support e�cient tiering of data
between heterogeneous memories. Instead, they rely on ex-
pensive o�ining of memory or swapping data to disk as a
means of pro�ling and migrating hot or cold data between
memory nodes. They also leave numerous optimizations on
the table; for example, multi-threaded hardware is not lever-
aged to maximize page migration throughput, resulting in
up to 95% under-utilization of available memory bandwidth.
To remedy these shortcomings, we propose and imple-

ment a general purpose OS-integrated multi-level memory
management system that reuses current OS page tracking
structures to tier pages directly between memories with no
additional monitoring overhead. We augment this system
with four additional optimizations: native support for trans-
parent huge page migration, multi-threaded migration of
a page, concurrent migration of multiple pages, and sym-
metric exchange of pages. Combined, these optimizations
dramatically reduce kernel software overheads and improve
raw page migration throughput over 15⇥. Implemented in
Linux and evaluated on x86, Power, and ARM64 systems,
our OS support for heterogeneous memories improves ap-
plication performance 40% over baseline Linux for a suite
of real-world memory-intensive workloads utilizing a multi-
level disaggregated memory system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
h�ps://doi.org/10.1145/3297858.3304024

CCS Concepts • Computer systems organization →
Heterogeneous (hybrid) systems; • Software and its en-
gineering → Virtual memory.

Keywords Page migration; Operating system; Heteroge-
neous memory management

ACM Reference Format:
Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
2019. Nimble Page Management for Tiered Memory Systems. In
2019 Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS ’19), April 13–17, 2019, Providence, RI, USA.
ACM,NewYork, NY, USA, 15 pages. h�ps://doi.org/10.1145/3297858.
3304024

1 Introduction
Modern computing systems are embracing heterogeneity in
their processing andmemory systems. Processors are special-
izing to improve performance and/or energy e�ciency, with
CPUs, GPUs, and accelerators pushing the boundaries of
instruction and data level parallelism. Memory systems are
combining the best properties of emerging technologies that
may be optimized for latency, bandwidth, capacity, or cost.
For example, Intel’s Knight’s Landing uses a form of high
bandwidth memory called multi-channel DRAM (MCDRAM)
alongside DDR4 memory to achieve both high bandwidth
and high capacity [27, 28]. Non-volatile 3D XPoint memory
has been commercialized for next-generation database sys-
tems, and disaggregated memory may be a promising solu-
tion to capacity scaling for blade servers [41, 50]. Both CPUs
and GPUs are embracing heterogeneous memory with IBM
and NVIDIA having recently delivered supercomputers con-
taining high-bandwidth GPU memories and high-capacity
CPU memories [29, 38, 57, 58, 66, 67].
Figure 1 illustrates an abstract example of the memory

systems architects and OS designers will likely have to con-
sider in the future. These systems consist of a compute node
(CPU, GPU, or both) connected to multiple types of memory
with varying latency, bandwidth, and/or capacity properties.
Of course, the particular con�guration will vary by system.
The critical operating system support needed to enable

the vision of e�ciently moving data as programs navigate
di�erent phases of execution, each with potentially distinct

KLOCs: Kernel-Level Object Contexts for Heterogeneous
Memory Systems

Sudarsun Kannan Yujie Ren Abhishek Bhattacharjee
Rutgers University Yale Univeristy

ABSTRACT

Heterogeneous memory systems promise better performance, energy-

efficiency, and cost trade-offs in emerging systems. But delivering

on this promise requires efficient OS mechanisms and policies for

data tiering and migration. Unfortunately, modern OSes are lacking

inefficient support for data tiering. While this problem is known for

application data, the question of how best to manage kernel objects

for filesystems and networking—i.e., inodes, dentry caches, journal

blocks, socket buffers, etc.—has largely been ignored and presents

a performance challenge for I/O-intensive workloads. We quantify

the scale of this challenge and introduce a new OS abstraction,

kernel-level object contexts (KLOCs), to enable efficient tiering of

kernel objects. We use KLOCs to identify and group kernel objects

with similar hotness, reuse, and liveness, and demonstrate their

use in data placement and migration across several heterogeneous

memory system configurations, including Intel’s Optane systems.

Performance evaluations using RocksDB, Redis, Cassandra, and

Spark show that KLOCs enable up to 2.7× higher system throughput

versus prior art.

CCS CONCEPTS

• Software and its engineering → Virtual memory.

KEYWORDS

Heterogeneous Memory, OS, Nonvolatile Memory, Virtual Memory

ACM Reference Format:

Sudarsun Kannan Yujie Ren Abhishek Bhattacharjee , Rutgers

University Yale Univeristy . 2021. KLOCs: Kernel-Level Object

Contexts for Heterogeneous Memory Systems. In Proceedings of the 26th

ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’21), April 19–23, 2021, Virtual,

USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3445814.

3446745

1 INTRODUCTION

Memory heterogeneity is here. Emerging systems combine the best

properties of memory technologies optimized for latency, bandwidth,

capacity, persistence, and cost. Multiple DRAM nodes are being

augmented with die-stacked DRAM [15, 30, 45], high-bandwidth

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19–23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04.
https://doi.org/10.1145/3445814.3446745

multi-channel DRAM (e.g., Intel’s Knight’s Landing [6]), and byte-

addressable NVMs (e.g., 3D XPoint in Intel Optane DC) [4, 14, 16].

While heterogeneous memory systems may offer better perfor-

mance, energy-efficiency, and cost trade-offs, they complicate mem-

ory management. Decades of research have demonstrated the chal-

lenge of data allocation and migration in multi-socket non-uniform

memory access (NUMA) architectures [7, 8, 10, 26, 33, 47]. Het-

erogeneous memory systems amplify this challenge by integrating

memory devices with more varied latency, bandwidth, and capacity

characteristics.

To optimize a heterogeneous memory system for performance,

one would ideally place the hottest data in the fastest memory node

(in terms of latency or bandwidth) until that node is full, the next-

hottest data would be filled into the second-fastest node up to its

capacity, and so on. As a program executes, its data would be peri-

odically assessed for hotness and re-organized to maximize perfor-

mance. For emerging software-controlled heterogeneous memory

systems, hotness detection and migration requires effective soft-

ware mechanisms and policies to determine data reuse and control

data migration. While it is possible for application developers to

orchestrate these tasks, efficient OS approaches that are transpar-

ent to the programmer are preferable because of their less onerous

programming model. Current OS mechanisms to measure reuse

and migrate data have, however, surprisingly high overheads and

have consequently been the subject of recent software and hardware

acceleration techniques [13, 19, 31, 33, 35, 37, 40, 50, 53, 57].

Unfortunately, most prior research on OS-directed data tiering

focuses on application-level data and ignores kernel objects. One

exception is recent work that migrates and replicates page tables

in DRAM devices in different sockets [11], but memory tiering of

kernel objects for storage and networking I/O remains unexplored.

This is because kernel objects have traditionally been thought to be

few in number, restricted in memory footprint, and less significant in

their impact on overall performance. This view is driven by network

and disk I/O speeds that are several orders of magnitude slower –

and hence more consequential to performance – than memory. But

while this was true in the past, advances in networking and storage

speeds now make memory management of kernel objects critical to

performance. We quantify the scale of this criticality by showing

that current approaches that ignore tiering of inodes, dentry caches,

journal blocks, network socket buffers, etc., leave as much as 4×

performance on the table. This paper’s central contribution is to

recover this wasted performance via a new OS abstraction, kernel-

level object contexts (KLOCs), that permits fluid tiering of kernel

objects.

The KLOC abstraction: KLOCs are logical groupings that capture

the kernel objects associated with OS entities requested by applica-

tions. Kernel entities requested by applications are files and sockets,

while kernel objects range from structures associated with files (e.g.,

A�multi-tiered�memory�system

• Modern�server�systems�have�formed�NUMA
• DRAM�and�DCPMM�share�the�memory�controller
• Since�Linux�5.0,�Optane�DCPMM�can�be�exposed�as�a�normal�RAM

• A�DCPMM�memory�node�is�treated�as�a�CPU-less�NUMA�node

DCPMM
(node-2)

DCPMM
(node-3)

CPU-0
Memory

Controller
Memory

Controller

Interconnection
links (e.g., UPI)

DRAM
(node-0)

DRAM
(node-1)

CPU-1
Memory

Controller

Upper-tier memory

Lower-tier memory

Threads

Lo
ca

l
me

mo
ry

Re
mo

te
 m

em
or

y

SW-managed tiered�memory�organization�
(A�DCPMM�memory�node�is�treated�as�a�CPU-less�NUMA�node)

CPU-0
Memory

Controller
Memory

Controller

Interconnection
links (e.g., UPI)

DCPMM
(node-2)

DRAM
(node-0)

DCPMM
(node-3)

DRAM
(node-1)

DRAM
(node-1)

DCPMM
(node-2)

DCPMM
(node-3)

DRAM
(node-0)

Physical address space

(a) (b)

CPU-1
Memory

Controller

Migration paths Promotion paths

1

2

3

4

Exploring�the�Design�Space�of�Page�Management�for�Multi-Tiered�Memory�Systems [USENIX�ATC�2021]

Memory�access�latency�and�bandwidth

/-D5A0-0 5-D5A0-1 5-D5A0-2 5-D5A0-3
0

5

10

15

20

25

BD
nG

w
LG

th
 (*

B/
s)

BDnGwLGth

0

100

200

300

400

500

La
te

nc
y

(n
s)

* /: /RcDl, 5: 5emRte

/Dtency

4-socket DRAM-based NUMA�machine� Multi-tiered�NUMA�machine�

The�critical�factor�in�performance�is�not�only�access
locality but�also�access tier of�memory

Threads

/-D5A0 5-D5A0 /-DC300 5-DC300
0

5

10

15

20

25

BD
nG

w
LG

th
 (*

B/
s)

BDnGwLGth

0

100

200

300

400

500

La
te

nc
y

(n
s)

* /: /RcDl, 5: 5ePRte

/Dtency

State-of-the-art�Linux�kernel* has�not�considered�the�characteristics�of�fast�
(DRAM)�and�slow�(DCPMM)�memory�with�NUMA�properties

Default memory�placement:�local-first

Interconnection
links (e.g., UPI)

CPU-0 CPU-1
Memory

Controller

DCPMM
(node-2)

DRAM
(node-0)

DCPMM
(node-3)

DRAM
(node-1)

1

2

3

4173ns

133ns

238ns

Memory
Controller

80nsDCPMM
(slow memory)

node-2

DRAM
(fast memory)

node-0

DCPMM
(slow memory)

node-3

DRAM
(fast memory)

node-1

Threads
Local memory nodes Remote memory nodes

1 2 3 4

1 2 3 4 Fallback path used in memory allocation

*As�of�conducting�this�study,�we�used�the�Linux�kernel�version�5.3

Q.�Why�don’t�you�reorder�the�fallback�node�list�
according�to�the�actual�performance?

Limited�page�placement in�current�Linux
Why�not�AutoNUMA?

Migration paths Promotion paths

Interconnection
CPU-0

DCPMM
(node-2)

DCPMM
(node-3)

DRAM
(node-1)

CPU-1
Memory

Controller
Memory

Controller

DRAM
(node-0)

X

Page�movement�to�CPU-less nodes�(DCPMM)�
is�prohibited�in�the�current�Linux

Page�movement�is�allowed�only�when�the�target�
node�has�a�free�space in�the�current�Linux

Interconnection
CPU-0

DCPMM
(node-2)

DCPMM
(node-3)

DRAM
(node-1)

CPU-1
Memory

Controller
Memory

Controller

Threads

D
R

AM
(n

od
e-

0)

M

fully occupied
X

P
X

0GiB

1GiB

3GiB

5GiB

7GiB

9GiB

11GiB

13GiB
D5A0(nRGe-0) D5A0(nRGe-1)

0 500 1000 1500 2000 2500
0GiB

8GiB

15GiB

23GiB

31GiB

DC300(nRGe-2)

0 500 1000 1500 2000 2500

DC300(nRGe-3)

7iPes(s)

0
eP

Rr
y

Gi
st

rib
ut

iR
n

grDph500

Need�for�page�placement�for�tiered�memory

Lower-tier

Infrequently accessed�pages�
reside�in�the�upper-tier�memory

Frequently accessed�pages�are�found
in�the�lower-tier�memory

Stock�Linux�5.3�version

Problems�(or�limitations)

1. Allocation�fallback�does�not�consider�access�tier.

2.�Pages�are�not�promoted�when�upper-tier�is�full

3.�Pages�are�never�demoted�or�reclaimed�to�lower-tier�memory

4.�Page�classification�is�too�coarse-grained�(binary:�active�or�inactive)

Problems�with�current�page�management

Exploiting�access�tier�first�and�then�locality

Interconnection

DCPMM
(node-2)

CPU-0

Memory
Controller

Threads

D
R

AM
(n

od
e-

0)

DCPMM
(node-3)

CPU-1

Memory
Controller

DRAM
(Node-1)

1
Xfully occupied

2

Case-1:�page�promotion

Interconnection

DCPMM
(node-2)

CPU-0

Memory
Controller

Threads

D
R

AM
(n

od
e-

0)

DCPMM
(node-3)

CPU-1

Memory
Controller

DRAM
(Node-1)

1

Case-2:�page�promotion�or�migration

fully occupiedX

2

3

access tier access tier

access locality

Conservative�Promotion�or�Migration�à AutoTiering-CPM

AutoTiering-CPM provides�alternatives�for�page�migration�failure�due�to�fully�
occupied�target�memory�node,�leading�to�performance�improvement

However, the�upper-tier�(DRAM)�memory�can�still�hold�infrequently�accessed�data�
while�frequently�used�pages�reside�in�the�lower-tier�(DCPMM)�memory

Enforcing�page�promotion�and�migration

• Finding�the�least�accessed�page�(LAP)
1. Inactive�page�from�file-backed region
2. LAP�page�from�anonymous region

Page Table

0 0 0 0 0 0

0 0 0 0 0 1

1 1 0 0 1 0

0 0 0 0 0 0

Access history
(N-bitvector) LAP Lists

[0]
[1]
[2]
[3]
[4]
[5]

NULL

0 0 0 1 1 1

NULL
NULL

*Access history is collected from AutoNUMA framework

With�AutoTiering-OPM,�we�can�achieve�better�utilization�of�the�
upper-tier�memory�

Interconnection

DCPMM
(node-2)

CPU-0

Memory
Controller

Threads

D
R

AM
(n

od
e-

0)

DCPMM
(node-3)

CPU-1

Memory
Controller

DRAM
(Node-1)

1

Fault page

fully occupied

Least accessed page

2a

2b
2c3

Opportunistic�Promotion�or�Migration�à AutoTiering-OPM

Hiding�latency�of�page�eviction
A software�optimization�comes�to�rescue

Interconnection

DCPMM
(node-2)

CPU-0

Memory
Controller

Threads

D
R

AM
(n

od
e-

0)

DCPMM
(node-3)

CPU-1

Memory
Controller

DRAM
(Node-1)

1

Fault page

fully occupied

Least accessed page

2a

2b
2c3

Page�eviction

DRAM�read
DCPMM�write

Page�promotion

DCPMM�read
DRAM�write

2b 3

Interconnection

DCPMM
(node-2)

CPU-0

Memory
Controller

Threads

D
R

AM
(n

od
e-

0)

DCPMM
(node-3)

CPU-1

Memory
Controller

DRAM
(Node-1)

Reserved page

1

Foreground

fully occupied
2

Least accessed page

2

Background

3

Page�promotion

DCPMM�read
DRAM�write

2

2 3
Page�eviction

DRAM read
DCPMM write

Page�return

Critical path is shortened

• System
• Intel(R)�Xeon�Gold�5218�CPU�@�2.30GHz�x�2
• 16GB�DRAM�x�2
• 128GB�Intel�Optane�DCPMM�x�2
• Linux�kernel�5.3�with�Ubuntu�18.04

• Benchmarks
• SPECAccel (OpenMP)
• GraphMat (PageRank)
• Graph500�(BFS)
• Liblinear

Experimental�environments

DCPMM
(node-2)

DCPMM
(node-3)

Interconnection
CPU-0 CPU-1

Memory
Controller

DRAM
(node-0)

DRAM
(node-1)

Memory
Controller

Performance�evaluation

*�Most�benchmarks�are�improved�by�AutoTiering

2.48x
2.42x 2.27x

1.69x

*�With�CPM,�speedup�is�up�to�2.48x in�503.postencil

6.99x 3.69x

2.61x

2.31x

*�With�OPM(BD),�speedup�is�up�to�6.99x in�graph500

BD:�background�demotion

Effectiveness�of�AutoTiering-CPM

Distribution�of�Memory�Usages

AutoTiering-CPM makes�better�use�of�multi-tiered�memory

Effectiveness�of�LAP classification
More�effectively�utilized

Stock�Linux�5.3�version AutoTiering-OPM

Lower-tier

Less�effectively�utilized

AutoTiering-OPM can�promote�frequently�accessed�pages�
while�demoting�least�accessed�pages

Effect�of�hiding�demotion�latency�

We�can�reduce�the�promotion�latency�by�deferring�the�page�demotion�as�background

Measured�page�promotion�latency�(CDF)�with�ftrace
- OPMX:�Opportunistic�Page�Migration�with�Exchange*

*Nimble�Page�Management�for�Tiered�Memory�Systems�[ASPLOS�‘19]

Is�page�exchange�acutally�needed?

*�Nimble�Page�Management�for�Tiered�Memory�Systems�[ASPLOS�‘19]

Interconnection
CPU-0

DCPMM
(node-2)

DCPMM
(node-3)

CPU-1
Memory

Controller
Memory

Controller

Threads Threads

D
R

AM
(n

od
e-

0)

D
R

AM
(n

od
e-

1)1

2

3 1 32
Co
py
�8B
�to
�a�
cp
u�r
eg
ist
er

Ov
erw
rite
�th
e�s
pa
ce

Co
py
�8B
�fr
om
�a�
CP
U�
reg
ist
er

Page�exchange�scheme*

Performance�comparison�with�prior�work

graph500
GraphMat

Liblinear
503.postencil

553.pclvrleaf
555.pseismic

559.pmniGhost
560.pilbdc

0

1

2

Sp
ee

du
p

no
rm

al
iz

ed

 to
 s

to
ck

 L
in

ux
 v

5.
3

8.16[
6.99[

4.54[
3.69[InteO Tiering-0.6 [36] 230 (BD)

• Commodity�OSes�are�not�mature�enough�to�support�multi-tiered�memory�
systems

• We�explored�new�page placement�schemes�to�extract�the full�benefits of�
multi-tiered�memory�systems

• Future�work
• Redesigning�the�kernel�thread�demoting�page�migration�to�DCPMM�with�the�
consideration�of�limited�memory�bandwidth�of�DCPMM

• Adopting�the�newly�added�framework�monitoring�memory�access�pattern�in�Linux�
kernel�called�DAMON to�reduce�the�access�tracking�overhead

Summary

CPU

Main memory
(Optane)

DRAM Cache

Memory
Controller

1
2

3

Physical address space

Cache hit

Cache fill

Cache miss

HW-assisted tiered�memory�organization�
(invisible�DRAM�to�OS)

CPU-0

Main memory
(Optane)

DRAM Cache

Memory
Controller

CPU-1
Memory

Controller

Interconnection links

6
4
B

…

6 … 6

3

Direct-mapped cache

Memory block

Caching space1 2 Not allowed
Cache conflict

A�Study�of�of�Memory�Placement�on�Hardware-assisted�Tiered�Memory�Systems [IEEE�CAL�2020]

HW-assisted tiered�memory�organization�

• Transparent�to�software
• Any�software�modification�is�not�required

•We�are�curious�about�the�commodity�operating�systems�work�well
• Modern�memory�management�is�highly�optimized�DRAM-only�systems

• Without�consideration�of�heterogenous�(hybrid�or�tiered)�memory�systems
• Only�NUMA�characteristics�are�considered

•We�revisit�the�design�and�implementation�of�operating�systems

Recall memory�placement:�local-first

CPU-0

Main memory
(Optane)

DRAM Cache

Memory
Controller

CPU-1
Memory

Controller

Interconnection links

6
4
B

…

6 … 6

Direct-mapped cache

Threads

1

2 3

The�local-first placement�policy�leads�to�spending�time�back�and�forth�between�the�
local�DRAM�cache�and�the�Optane�main�memory�while�the�remote�DRAM�cache�is�idle�

Limited�cache�
capacity

Not�being�utilized

Let’s�see�how�the�local-first�policy�works�on�the�HW-assisted�tiered�memory�system

AutoNUMA is�considered�harmful

CPU-0

Main memory
(Optane)

Memory
Controller

CPU-1
Interconnection links

Main memory
(Optane)

DRAM Cache

Memory
Controller

Threads

DRAM Cache
1

2

34

Accessing�misplaced�data

Migrating�to�local�memory

Evicting�a�cache�block

Inserting�the�block

AutoNUMA balancing�may�degrade�performance�on�tiered�memory�systems.�If�the�
local�DRAM�cache�does�not�have�enough�space,�the�application�can�experience�
frequent�DRAM�cache�misses�while�not�utilizing�the�remote�DRAM�cache

Again,�it�is�designed�for�DRAM-only�systems

Our�approach:�dram-first
Exploiting�such�hardware�characteristics�in�placing�memory�(pages)�

CPU-0

Main memory

DRAM Cache

Memory
Controller

Interconnection links

Main memory

CPU-1
Memory

Controller

Threads

Chunk #1 Chunk #2Chunk #31 23

S
Do�not�always�bring�remote�
(DRAM)�pages

Allow�memory�allocation�
that�can�fit�in�DRAM�cache

Make�allocation�on�remote�
memory�to�utilize�remote�
DRAM�cache�

Back�to�local�memory

Preliminary�results:�latency�&�bandwidth

Experimental�environments
- Intel�Xeon�Gold�5218�(16cores)�x�2�sockets
- Two DRAM�16GB�dimms�and�two�DCPMM�128GB�dimms�per�socket�
- Linux�kernel�5.3�with�Ubuntu�18.04�server�distribution

1. Demoting�or�migrating�pages�to�Optane�memory�suffers�from�the�limited�
memory�bandwidth and�leads�to�write�amplification�problems

Remaining�challenges�in�tiered�memory�systems

#�of�threads #�of�threads

Optane�DCPMM DDR4�DRAM

*Random�write�with�256B�granularity

1. Demoting�or�migrating�pages�to�Optane�memory�suffers�from�the�limited�
memory�bandwidth and�leads�to�write�amplification�problems

2. Minimizing�DRAM�cache�conflict�misses�within�an�Optane�memory�node�
• DRAM�cache�is�organized�as�a�direct-mapped�cache
• Two�more�memory�blocks�cannot�be�mapped�to�a�single�cache�set
• Note�that�the�DRAM�cache�indexing�scheme�has�not�been�disclosed�

Remaining�challenges�in�tiered�memory�systems

Thank�You!
Artifact�available�at�https://github.com/csl-ajou/AutoTiering

E-mail:�jsahn@ajou.ac.kr
Web:�https://jeongseob.github.ioJeongseob�Ahn�

https://github.com/csl-ajou/AutoTiering
mailto:jsahn@ajou.ac.kr
https://jeongseob.github.io/

