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A multi-tiered memory system
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Write for us ink:

DI {‘ \M L] Edition I would like to get this queued up to get merged. Since most of the
U er- t ier memor Return to the Churn is in the nvdimn code, and it also depends on some refactoring
Announcements page that only exists in the nvdimm tree, it seems like putting it in *via*
(node-1 ) the nvdimm tree is the best path.
But, this series makes non-trivial changes to the "resource’ code and
| | memory hotplug. I'd really like to get some acks from folks on the
first three patches which affect those areas.

DRAM
(node-0)

DCPMM
(node-2)

memory
memory

Borislav and Bjorn, you seem to be the most active in the resource code.

I Michal, I'd really appreciate at look at all of this from a mem hotplug
perspective.

D( :PM M Note: these are based on commit d2£33c19644 in:
o
L ower- t ier memo r\y git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm.git 1ibnvdinm-pending
Changes since vi:

(nOde 3) * Now based on git://git.kernel.org/pub/scn/linux/kernel/git/djbu/nvdinn.git
* Use binding/unbinding from us" code
* Move over to a "dax bus" driver from being an nvdimm driver

Local
Remote

Persistent memory is cool. But, currently, you have to rewrite
your applications to use it. Wouldn't it be cool if you could
just have it show up in your system like normal RAM and get to
it like a slow blob of memory? Well... have I got the patch
series for you!

This series adds a new "driver” to which pmem devices can be

PY IvI r n rV r m h V f r m N IvI A attached. Once attached, the memory "owned" by the device is
hot-added to the kernel and managed like any other memory. On
systems with an HMAT (a new ACPI table), each socket (roughly)
will have a separate NUMA node for its persistent memory so

this newly-added memory can be selected by its unique NUMA
node.

 DRAM and DCPMM share the memory controller R

* Since Linux 5.0, Optane DCPMM can be exposed as a normal RAM
A DCPMM memory node is treated as a CPU-less NUMA node
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SW-managed tlered memory organization
(A DCPMM memory node is treated as a CPU-less NUMA node)

Exploring the Design Space of Page Management for Multi-Tiered Memory Systems [USENIX ATC 2021]



Memory access latency and bandwidth
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Default memory placement: local-first

State-of-the-art Linux kernel* has not considered the characteristics of fast
(DRAM) and slow (DCPMM) memory with NUMA properties

Local memory nodes Remote memory nodes cPU-0 interconnection CPUA
Memory == ~osleg Pl 4oL -Memor)b|
9 Controllery [T === [ =1 = Comtroller
| i M i
DRAM » DCPMM DRAM j DCPMM J.*gons: *1 b
(fast memory) (slow memory) (fast memory) (slow memory) $ 1
node-0 node-2 node-1 node-3 DRAM: DRAM:
(node-0) (node-1),
Q@ —0 0O 0O raivackpath used in memory allocation d 173ns d 238ns
DCPMM DCPMM
(node-2) (node-3)

Q. Why don’t you reorder the fallback node list
according to the actual performance?

*As of conducting this study, we used the Linux kernel version 5.3



Limited page placement in current Linux

Why not Aut oNUMA?

CPU-0 CPU-1 |=
Memory Interconnection Momory CPU-&---------,—-----CEU'-'I--'
Controller Controller Men'1c?y- - = |- Julrcnecion o - 1| Memory |
|
|

I I Controller i | Controller

DRAM

node-0)

(node-0) A A (node-1) fully occupied\

----- I - @- ®' .
DRAM 3. ... .- DRAM . » ‘Tg DRAM g

DCPMM - DCPMM DCPMM e‘\-_QQEMM
(node-2) V 4 & (node-3) (node-2) (node-3)
-=<p Migration path-s ;> Promotion paths
Page movement to CPU-1ess nodes (DCPMM) Page movement is allowed Only when the target

is prohibited in the current Linux node has a free space in the current Linux




Need for page placement for tiered memory
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Problems with current page management

Problems (or limitations)

1. Allocation fallback does not consider access tier.

2. Pages are not promoted when upper-tier is full

3. Pages are never demoted or reclaimed to lower-tier memory

4. Page classification is too coarse-grained (binary: active or inactive)




Exploiting access tier first and then locality

Conservative Promotion or Migration =2 AutoTiering—-CPM

s _

!
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access locality
Case-1: page promotion Case-2: page promotion or migration

AutoTiering-CPM provides alternatives for page migration failure due to fully
occupied target memory node, leading to performance improvement

However, the upper-tier (DRAM) memory can still hold infrequently accessed data
while frequently used pages reside in the lower-tier (DCPMM) memory



Enforcing page promotion and migration

Opportunistic Promotion or Migration 2 AutoTiering-0OPM

Threads * Finding the least accessed page (LAP)
1. Inactive page from file-backed regi
CPU-:O _| CcPU-1 Pag . egion
Vemoy| [ iereonnedtion} —r—r 2. LAP page from anonymous region
Controllgr Controller
| A :
ccess history
(RIEEQM) Page Table (N-bitvector) LAP Lists
fy DCPMM B I 0
E (node-3) —{0]oJofoo]1]eg=mmmmmo [1]
_\ NULL e - [2]
N Fault page Least accessed page —L1l1]olol1lo ln\;,' ------ [3]
e NULL <= = [4]
—>{0[0JoJoJoJo} )} vz =g |05
_>| 0 | 0 | 0 | 1 | 1 | 1 |’, *Access history Is collected from AutoNUMA framework

With AutoTiering-0PM, we can achieve better utilization of the
upper-tier memory



Hiding latency of page eviction

A software optimization comes to rescue
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Experimental environments

* System
* Intel(R) Xeon Gold 5218 CPU @ 2.30GHz x 2
« 16GB DRAM x 2
* 128GB Intel Optane DCPMM x 2
 Linux kernel 5.3 with Ubuntu 18.04

 Benchmarks

CPU-0

Memory
Controller

Interconnection

CPU-1

DRAM
(node-0)

« SPECAccel (OpenMP)
« GraphMat (PageRank)

DCPMM
(node-2)

Memory
Controller

DRAM
(node-1)

« Graph500 (BFS)
 Liblinear

DCPMM
(node-3)




Performance evaluation

BD: background demotion
/1 CPM 3 OPM (BD)

[—1 Baseline (Stock Linux 5.3)
6.99x 3.69x

2.61x
2.48x :
242)( 227)(

Speedup

graph500 GraphMat Liblinear 503.postencil 553.pclvrleaf _ 560.pilbdc

* Most benchmarks are improved by AutoTiering
* With CPM, speedup is up to 2.48x in 503 .postencil
* \With OPM (BD) , speedup is up to 6.99x in graph5e90



Effectiveness of AutoTiering-CPM

Distribution of Memory Usages
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AutoTiering-CPM makes better use of multi-tiered memory



Effectiveness of LAP classification

LAP levels
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Effect of hiding demotion latency

Measured page promotion latency (CDF) with ftrace
- OPMX: Opportunistic Page Migration with Exchange*
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We can reduce the promotion latency by deferring the page demotion as background

*Nimble Page Management for Tiered Memory Systems [ASPLOS ‘19]



Is page exchange acutally needed?

Threads Threads
CPU-0 CPU-1 e
Interconnection 0};@‘ ‘eg\s’*
Memory Memory (2 e W)
Controller Controller (,Q\) 6696 a(?
| I " e SN
— /g R RN R R RN RN Y — 09‘3% QQS\N‘ *%%
=5 ‘ \\a ! == C O (/OQ
Y s i 000
(] \8/ } |~ - - f ,,,,,,,,,,,,,,,,, | ()] g/ /
-e Sea —”’
DCPMM DCPMM
(node-2) (node-3)

Page exchange scheme*

instead of copying data into new pages, we transfer data

between each pair of pages using copy thread(s) that use

CPU registers as the temporary storage for in-flight iterative

data exchange operations. This use of registers allows our

mechanism to avoid allocating a complete temporary page.
* Nimble Page Management for Tiered Memory Systems [ASPLOS ‘19]



Performance comparison with prior work
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Summary

 Commodity OSes are not mature enough to support multi-tiered memory
systems

* \We explored new page placement schemes to extract the full benefits of
multi-tiered memory systems

* Future work

* Redesigning the kernel thread demoting page migration to DCPMM with the
consideration of limited memory bandwidth of DCPMM

« Adopting the newly added framework monitoring memory access pattern in Linux
kernel called DAMON to reduce the access tracking overhead
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HW-assisted tiered memory organization

* Transparent to software
« Any software modification is not required

* \WWe are curious about the commodity operating systems work well

 Modern memory management is highly optimized DRAM-only systems
« Without consideration of heterogenous (hybrid or tiered) memory systems
* Only NUMA characteristics are considered

« We revisit the design and implementation of operating systems



Recall memory placement: local-first

Let’s see how the local-first policy works on the HW-assisted tiered memory system
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The local-first placement policy leads to spending time back and forth between the
local DRAM cache and the Optane main memory while the remote DRAM cache is idle



AutoNUMA s considered harmful

Again, it is designed for DRAM-only systems
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AutoNUMA balancing may degrade performance on tiered memory systems. If the
local DRAM cache does not have enough space, the application can experience
frequent DRAM cache misses while not utilizing the remote DRAM cache



Our approach: dram-first

Exploiting such hardware characteristics in placing memory (pages)
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Preliminary results: latency & bandwidth

Experimental environments

- Intel Xeon Gold 5218 (16cores) x 2 sockets

- Two DRAM 16GB dimms and two DCPMM 128GB dimms per socket
- Linux kernel 5.3 with Ubuntu 18.04 server distribution
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Remaining challenges in tiered memory systems

1. Demoting or migrating pages to Optane memory suffers from the limited
memory bandwidth and leads to write amplification problems

*Random write with 256B granularity

Throughput(GB/sec)
Throughput(GB/sec)

Optane DCPMM “ DDR4 DRAM

# of threads # of threads



Remaining challenges in tiered memory systems

1. Demoting or migrating pages to Optane memory suffers from the limited
memory bandwidth and leads to write amplification problems

2. Minimizing DRAM cache conflict misses within an Optane memory node
« DRAM cache is organized as a direct-mapped cache

« Two more memory blocks cannot be mapped to a single cache set
* Note that the DRAM cache indexing scheme has not been disclosed
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Thank You!

Artifact available at https://qgithub.com/csl-ajou/AutoTiering

E-mail: [sahn@ajou.ac kr

JeOngseOb Ahn Web: https://ieongseob.github.io
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