Multi-Tiered Memory

I Operating System Support for
(A Case Study of Intel's Optane DCPMM)

E-mail: [sahn@ajou.ac kr

JeOngseOb Ahn Web: https://ieongseob.github.io

‘@) AJOU UNIVERSITY

mailto:jsahn@ajou.ac.kr
https://jeongseob.github.io/

In this talk...

* Exploring the Design Space of Page Management for Multi-Tiered Memory
Systems

* Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn
« USENIX Annual Technical Conference (ATC), July 2021

« A Study of Memory Placement on Hardware-assisted Tiered Memory Systems

* \Wonkyo Choe, Jonghyeon Kim, and Jeongseob Ahn
« |EEE Computer Architecture Letters (CAL), 19(2), July-December 2020

Artifact available at https://github.com/csl-ajou/AutoTiering

https://github.com/csl-ajou/AutoTiering

Large-scale memory systems

Session: VM/Memory ASPLOS19, April 13-17, 2019, Providence, RI, USA
Software-Defined Far Memory in
Data Tiering in Heter Memor;
s Y Warehouse-Scale Computers
|nte| newsroom Top News Sections ~ News By Categ R
Subramanya R Dulloor'? Amitabha Roy! ~ Zheguang Zhao®> ~ Narayanan Sundaram' Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw Burny,
: : 2 - :)
Nadathur Satish' Rajesh Sankaran' Jeff Jackson' Karsten Schwan® Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid, Greg Thelen,
'Intel Labs, 2Georgia Institute of Technology, *Brown University Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan
{andreslc junwhan, suleiman, nehaagarwal, rburny, shakeelb, jichuan,
News Byte | ﬂte' Opta ne D . junaids, gthel tsever, yuzhao, parthas}@google. con
Google
October 30, 2018
Readies for Wid Ab
st] i Andres Lagar-Cavilla, junw}mn Ahn, Suleiman Souhlal, Neha Agar-
d and slowd technology & &
Contact Intel PR :le:"es o total oot of Ziv:;s‘;ﬁ’ wal, Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chau-
Mem o fmm (WSCs) One pmmlﬂmg gule, Nan Deng, Junaid Shahid, Greg Thelen, Kamil Adam Yurtsever,
large . formpy o y Yu Zhao, and Parthasarathy Ranganathan. 2019. Software-Defined
: . et Nimble Page Management for Tiered o TC0 i 10 0 8 Sheapes B 1 iy Waron S Compoters o 20 et
amsung unvelis Inaustry-rirs emory DRA M Svst and use it to store o
. d emory Systems
Module Incorporating New CXL Interconnect _
formal Zi Yan Dai
St d d RRA Rutgers University & NVIDIA
an a r high ziy@nvidia.com dlustig]
boun,
. to rep) David Nellans Abhishe .
Audio Share KLOCs: Kernel-Level Object Contexts for Heterogeneous
slowd NVIDIA Yale
qu§§li dnellans@nvidia.com abhishef Memory Systems
pedin]
. Abstract CCS Concepts - Cony N .)
e Software-controlled heterogeneous memmory systems have ~ Heterogeneous (hybri Sudarsun Kannan Yujie Ren Abhishek Bhattacharjee
DDR5 DRAM-based diile IS desiahad s Ethahiat £ i the potential to increase the performance and cost efficiency ~ gineering — Virtual Rutgers University Yale Univeristy
ased memory module is designed to meet the high-performance T T e ofcomp\\i}mgsystfn;si)Hoxcvcrltheycanonlydelwfrorln this Keywords Page migr ABSTRACT mul-channel DRAM (o, Tntels Knigh's Landing [6]), and byte-
demands of data-intensive app/icatians includingAI and HPC 5 lating promise if supported by efficient page management policies neous memory manages . ter energy- addressable NVMs (e.g.. 3D XPoint in Intel Optane DC) [4, 14, 16].
and mechanisms within the operating system (OS). Current ‘While heterogeneous memory systems may offer better perfor-
that i : 'ACM Reference Format| efficiency, and cost trade-offs in m\crg.ng systems. But delivering e y ay pes
08 implementations do not support efficient tiering of data i rcry-clciency, and ot rade-fs, ey complie men-
of fas Zi Yan, Daniel Lustig, Davi on this promise requires efficient OS mechanisms and policies for 2y~ a @ » they complica
¥ . a prog] between heterogeneous memories. Instead, they rely on ex- 2019. Nimble Page Manag| data tiering and migration. Unfortunately, modern OSes are lacking y ades of researcl the chal-
CXL interface enables memory capacity to scale to the terabyte level and cavea pensive offlining of memory or swapping data to disk asa) 00 o Gunon inefficient support for data tiering. While this problem is known for lenge of data allocation and migration in multi-socket non-uniform
2 lace ‘means of profiling and migrating hot or cold data between ating Systems (ASPLOS 1) application data, the question of how best to manage kernel objects ‘memory access (NUMA) architectures [7, 8, 10, 26, 33, 47]. Het-
substantially reduces system latency i memory nodes. They also leave numerous optimizations on At New York, NY, USA. | for filesystems and networking—i.e., inodes, dentry caches, journal ~ erogencous memory systems amplify this challenge by integrating
tomat the table; for example, multi-threaded hardware is not lever- 3304024 blocks, socket buffers, etc.—has largely been ignored and presents memory devices with more varied latency, bandwidih, and capacity
i aged to maximize page migration throughput, resulting in a performance challenge for 1/O-intensive workloads. We quantify ~ characteristics.
P up to 95% under-utilization of available memory bandwidth. 1 Introduction the scale of this challenge and introduce a new OS abstraction, To optimize a memory system for
With T dy these sh d imple. kernel-level object contexts (KLOC), to enable efficient tiering of one would ideally place the hottest data in the fastest memory node
ith o remedy these shortcomings, we propose and imple- Modern computing syste 1 ‘bandwidth 1 th e full, th
ing o ment a general purpose OS-integrated multi-level memory Y Kernel objects. We use KLOC to identify and group kernel objects (in terms of latency or bandwidth) until that node is full, the next-
an% 5 Imanagement system that reuses current OS page tracking their processing and me; with similar hotness, reuse, and liveness, and demonstrate their ~ hottest data would be filled into the second-fastest node up to its
" 8 4 page fracking izing to improve perforn} use in data placement and migration across several heterogeneous capa 50 on. As a program executes, its data would be peri-
NVM structures to tier pages directly between memories with no CPUs, GPUs, and accell memory system configurations, mc]udmv Intel’s Opmnc systems. odically assessed for hotness and re-organized to maximize perfor-
DRAI additional monitoring overhead. We augment this system instruction and data levy Performance evaluations using R Redis dra, and ‘mance. For emerging software-controlled heterogencous memory
only with four additional optimizations: native support for trans- combining the best prop! Spark show that KLOCs enable up to 2 7 ,“é,m system throughput systems, hotness detection and migration requires effective soft-
parent huge page migration, multi-threaded migration of 1.y be optimized for laf Versus prior ar. ‘ware mechanisms and policies to determine data reuse and control
a page, concurrent migration of multiple pages, and sym- For example, Intel’s Kn data migration. While it is possible for application developers to
metric exchange of pages. Combined, these optimizations bandwidh memory calld CCS CONCEPTS orchestrate these tasks, efficient OS approaches that are transpar-
g dramatically reduce kernel software overheads and improve glonvide DDRA memor « Software and its engineering —» Virtual memory. ent to the programmer are preferable because of their less onerous
it Bl 8 programming model. Current OS mechanisms to measure reuse
oo A raw page migration throughput over 15x. Implemented in and high capacity [27, 2
oot . » and migrate data have, however, surprisingly high overheads and
D A Linux and evaluated on x86, Power, and ARM64 systems, has b KEYWORDS '
v as been have consequently been the subject of recent software and hardware
o our OS support for heterogeneous memories improves ap- tems, and disaggregated| Heterogeneous Memory, OS, Nonvolatile Memory, Virtual Memory acceleration techniques [13, 19, 31,33, 35, 37, 40, 50, 53, 57].
plication performance 40% over baseline Linux for a suite (o to capacity scaling ACM Reference Format: Unfortunately, most prior research on OS-directed data tiering
of real-world memory-intensive workloads utilizing a multi- ang GPUs are embracin Sudarsun Kannan Yujic Ren Abhishek Bhattacharice . Rurgers focuses on application-level data and ignores kernel objects. One
level disaggregated memory system. and NVIDIA having rec University Yale Univeristy . 2021. KLOCs: Kemel-Level Object exception is recent work that migrates and replicates page tables
Fermission 1o make Ggial o hard copies oF ol o part of (s work or taining high-bandwidth] i;:;;‘lxls’lur Hc\crln)}fcm'uus My«:mu:y i,umh rlg Proc m(miv o the 261h in DRAM dovices in ifferant sockets [1], but memary tiering of
ersonal or classroom use is granted without fee provided that copies are not CPU memories [29, 38, International Conference on Architectural Support for Programming kernel objects for storage and networking 1/O remains unexplored.
P 9 tec mithon idee : y Languages and Operating Systems (ASPLOS "21), April 19-23, 2021, Virtual, This is because kernel objects have traditionally been thought to be
‘made or distributed for profit or commercial advantage and that copies bear Figure 1 illustrates a USA. ACM, New York, NY, USA. 13 pages. hitpssidoi org/10.1 145734458 14 y
the full citation on the frst page. Copyrights for components systems architects and YA A - NY, USA, 2 few in number, restricted in memory footprint, and less significant in
of this work owned by others than ACM must be honored. Abstracting with ystems o o their impact on overall performance. This view is driven by network
credit is permitted. To copy otherwise, or republish, to post on servers or to sider in the future. Thes and disk 1/O speeds that are several orders of magnitude slower —
redistrbute tolss,requires prior specificpermission and/or a fee. Request (CPU, GPU, or both) con| 1 INTRODUCTION and hence more consequential to performance — than memory. But
permissions from permissions@acm.org. with varying latency, ba Memory heterogeneity is here. Emerging systems combine the best while this was true in the past, advances in networking and storage
ASPLOS '19, April 13-17, 2019, Providence, RI, USA Of course, the particula properties of memory technologies optimized for latency, bandwidth, speeds now make memory management of kernel objects critical to
© 2019 Association for Computing Machinery. The critical operating capacity, persistence, and cost. Multiple DRAM nodes are being performance. We quantify the scale of this criticality by showing
ACMISBN 978-1-4503-6240-5/19/04...$15.00 the vision of efficiently augmented with die-stacked DRAM [15, 30, 45], high-bandwidth that current approaches that ignore tiering of inodes, dentry caches,
itps/doLorg/10.1145/3297858. 3304024 diforont phases of exom £
Pk o o il o pr sk o et
:“*“’:’“ use o not made or distributed recover this wasted performance via a new OS abstraction, kernel-
oo , level object contexts (KLOCs), that permits fluid tiering of kernel
an e it page Copyrighisforcompomeris f i work owned by ohers tham ACM
o ARt Vit it To oy o e, o
e The KLOC abstraction: KLOCs are logical groupings that capture
ASPLOS '21, April 19-23, 2021, Virtual, USA the kernel objects associated with OS entities requested by appli
2001 Assaiaion for Computing Machinery: tions. Kernel entities requested by applications are files and sockets
NopeRtong 1o 1SS ShsE4S while kernel objects range from structures associated with files (e.g.,

A multi-tiered memory system

® ©® 2 alowpersistentmemorytobe X 4

Threads C @ lwn.net/Articles/776921/ * | =80 %@

il Apps] ENDIC m NPR Hacker News &) CHASE ¥ Videos - Microsof... @8) csl-ajou@github () casys-kaist-internal & CSL » | B3 Other Bookmarks

@,.Lvrm User: () Passwores

C P U -O Interconnection C P U - 1 N\w’.‘; ez Allow persistent memory to be used like normal RAM

1 (Subscribe]

Memor links (eg - UP I) Memor g;"‘ﬁ“‘ﬁd,_ From: Dave Hansen <dave hansen-AT-linux intel.com>
y y CRIyEAIG To: dave-AT-sr71 net
Archives Subject: [PATCH 0/4] Allow persistent memory to be used like normal RAM
Controller Controller Search Date: Wed, 16 Jan 2019 10:18:59 -0800
Kernel Message- <20190116181859.D1504459@viggo,jf intel com>
Security :
Drsizibutions ce Dave Hansen <dave hansen-AT-linux.intel.com>, dan j williams-AT-intel.com, dave jiang-AT-intel.com, zwisler-
g AT-kernelorg, vishal L verma.AT:ntel.com, thomas.endacky-AT-amd com, akpm- AT inux- foundation g,
i g mhocko-AT-suse.com, linux-nvdimm.-AT-lists.01 org, linux-kernel-AT-vger kernel org, linux-mm-AT-kvack.org,
- i s ying huang-AT-intel.com, fengguang wu-AT-intel.com, bp-AT-suse.dc, bhelgaas-AT-google.com, baiyaowei-AT-
Cmss chinamobile.com, tiwai-AT-suse.de
ERAIESD Archive- Article

Write for us ink:

DI {‘ \M L] Edition I would like to get this queued up to get merged. Since most of the
U er- t ier memor Return to the Churn is in the nvdimn code, and it also depends on some refactoring
Announcements page that only exists in the nvdimm tree, it seems like putting it in *via*
(node-1) the nvdimm tree is the best path.
But, this series makes non-trivial changes to the "resource’ code and
| | memory hotplug. I'd really like to get some acks from folks on the
first three patches which affect those areas.

DRAM
(node-0)

DCPMM
(node-2)

memory
memory

Borislav and Bjorn, you seem to be the most active in the resource code.

I Michal, I'd really appreciate at look at all of this from a mem hotplug
perspective.

D(:PM M Note: these are based on commit d2£33c19644 in:
o
L ower- t ier memo r\y git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm.git 1ibnvdinm-pending
Changes since vi:

(nOde 3) * Now based on git://git.kernel.org/pub/scn/linux/kernel/git/djbu/nvdinn.git
* Use binding/unbinding from us" code
* Move over to a "dax bus" driver from being an nvdimm driver

Local
Remote

Persistent memory is cool. But, currently, you have to rewrite
your applications to use it. Wouldn't it be cool if you could
just have it show up in your system like normal RAM and get to
it like a slow blob of memory? Well... have I got the patch
series for you!

This series adds a new "driver” to which pmem devices can be

PY IvI r n rV r m h V f r m N IvI A attached. Once attached, the memory "owned" by the device is
hot-added to the kernel and managed like any other memory. On
systems with an HMAT (a new ACPI table), each socket (roughly)
will have a separate NUMA node for its persistent memory so

this newly-added memory can be selected by its unique NUMA
node.

 DRAM and DCPMM share the memory controller R

* Since Linux 5.0, Optane DCPMM can be exposed as a normal RAM
A DCPMM memory node is treated as a CPU-less NUMA node

A
CPU-0 Interconnection CPU-1 DCPMM .
Memory links (e.g., UPI) Memory (node-3) =)
Controller Controller E
@)
L
. DCPMM | | &
© DRAM _'__ __: DRAM® (node-2) Q
(node-0) == (node-1) P
)]
DRAM | | @
de-1) Q
@ DCPVMM | N~ | bcPvv @ (no 2
(node-2) (node-3) DRAM ®
(node-0) v

-=<p Migration paths - Promotion paths

(a) (b)

SW-managed tlered memory organization
(A DCPMM memory node is treated as a CPU-less NUMA node)

Exploring the Design Space of Page Management for Multi-Tiered Memory Systems [USENIX ATC 2021]

Memory access latency and bandwidth

25 500
* L: Local, R: Remote
204 EE Bandwidth 44,
wn
- —e— Latency
T z
~ 15 A - 300 &
e >
-
5 S
= 101 200 &
o
c |
(0]
M 5 L 100
0 0
L-DRAM-0 | | R-DRAM-1 R-DRAM-2 R-DRAM-3

4-socket DRAM-based NUMA machine

Bandwidth (GB/s)

5]
1

o
1

15 4

10 -

*L: Local, R: Remote
EE Bandwidth
—e— Latency ||
L-DRAM R-DRAM L-DCPMM R-DCPMM

- 300

Multi-tiered NUMA machine

500

- 400

S
o
Latency (ns)

- 100

he critical factor in performance is not only access

locality but also access tier of memory

Default memory placement: local-first

State-of-the-art Linux kernel* has not considered the characteristics of fast
(DRAM) and slow (DCPMM) memory with NUMA properties

Local memory nodes Remote memory nodes cPU-0 interconnection CPUA
Memory == ~osleg Pl 4oL -Memor)b|
9 Controllery [T === [=1 = Comtroller
| i M i
DRAM » DCPMM DRAM j DCPMM J.*gons: *1 b
(fast memory) (slow memory) (fast memory) (slow memory) $ 1
node-0 node-2 node-1 node-3 DRAM: DRAM:
(node-0) (node-1),
Q@ —0 0O 0O raivackpath used in memory allocation d 173ns d 238ns
DCPMM DCPMM
(node-2) (node-3)

Q. Why don’t you reorder the fallback node list
according to the actual performance?

*As of conducting this study, we used the Linux kernel version 5.3

Limited page placement in current Linux

Why not Aut oNUMA?

CPU-0 CPU-1 |=
Memory Interconnection Momory CPU-&---------,—-----CEU'-'I--'
Controller Controller Men'1c?y- - = |- Julrcnecion o - 1| Memory |
|
|

I I Controller i | Controller

DRAM

node-0)

(node-0) A A (node-1) fully occupied\

----- I - @- ®' .
DRAM 3.- DRAM . » ‘Tg DRAM g

DCPMM - DCPMM DCPMM e‘\-_QQEMM
(node-2) V 4 & (node-3) (node-2) (node-3)
-=<p Migration path-s ;> Promotion paths
Page movement to CPU-1ess nodes (DCPMM) Page movement is allowed Only when the target

is prohibited in the current Linux node has a free space in the current Linux

Need for page placement for tiered memory

graph500
DRAM(node-0) DRAM(node-1)
Infrequently accessed pages
reside in the upper-tier memory
Lv.8
Lv.7 'S
e 3
2 Upper-tier
Cko 2 DCPMM(NOQE-3) -srersserssrsesssssssssssssssssssssssssssssssssssnssan
Lv.4 .
= g‘ Lower-tier
[Lv3 £ 31GiB -
Q
| Lv.2 =
o 23GiB - _ Frequently accessed pages are found
[in the lower-tier memory
Lv.0 15GiB A
8GiB A
0GiB - B e

0 500 1000 1500 2000 2500 0 50 1000 1500 2000 2500

Times(s)

Stock Linux 5.3 version

Problems with current page management

Problems (or limitations)

1. Allocation fallback does not consider access tier.

2. Pages are not promoted when upper-tier is full

3. Pages are never demoted or reclaimed to lower-tier memory

4. Page classification is too coarse-grained (binary: active or inactive)

Exploiting access tier first and then locality

Conservative Promotion or Migration =2 AutoTiering—-CPM

s _

!
CPU{O CPU-1 CPU-0 CPU-1
Interconnection =] =i her OONME Sk o jem]
M M M M
cOiI?c‘;'pr Controlle Jomett | [y
5 8 f 77777777777 IDRAM E 3 \kiiilﬁ 77777777 I :
o) \ N Q | !
1§ ‘i“ 2 (o T8 N !
DCPV\N\A.@T DCPMM
(node-2) (node-2)
access locality
Case-1: page promotion Case-2: page promotion or migration

AutoTiering-CPM provides alternatives for page migration failure due to fully
occupied target memory node, leading to performance improvement

However, the upper-tier (DRAM) memory can still hold infrequently accessed data
while frequently used pages reside in the lower-tier (DCPMM) memory

Enforcing page promotion and migration

Opportunistic Promotion or Migration 2 AutoTiering-0OPM

Threads * Finding the least accessed page (LAP)
1. Inactive page from file-backed regi
CPU-:O _| CcPU-1 Pag . egion
Vemoy| [iereonnedtion} —r—r 2. LAP page from anonymous region
Controllgr Controller
| A :
ccess history
(RIEEQM) Page Table (N-bitvector) LAP Lists
fy DCPMM B I 0
E (node-3) —{0]oJofoo]1]eg=mmmmmo [1]
_\ NULL e - [2]
N Fault page Least accessed page —L1l1]olol1lo ln\;,' ------ [3]
e NULL <= = [4]
—>{0[0JoJoJoJo})} vz =g |05
_>| 0 | 0 | 0 | 1 | 1 | 1 |’, *Access history Is collected from AutoNUMA framework

With AutoTiering-0PM, we can achieve better utilization of the
upper-tier memory

Hiding latency of page eviction

A software optimization comes to rescue

@ Foreground Background
_Threads
i
CPU0 CPU-1 CPU-0 CPU-1
Interconnection] Interconnection
Memor Memory mory Memory
Controllgr Controller Cq_ntroller Controller
DRAM 23 Rt DRAM
[N H o
. ‘T& <39 ‘fuILy‘?ccupl *
N (Node-1) O EMNINYNNNNNN (Node-1)
\@ oc %V i '
"y DCPMM NSOPMM | DCPMM
(node-3) (node-2) (node-3)
N Fault page Least accessed page Reserved page Least accessed page
Page eviction Page promotion Page promotion . .
oot +@ —---2-ro-2l > OQ--———- - Critical path is shortened
DRAM read DCPMM read DCPMM read
DCPMM write DRAM write DRAM write
Page eviction S Page return
DRAM read

DCPMM write

Experimental environments

* System
* Intel(R) Xeon Gold 5218 CPU @ 2.30GHz x 2
« 16GB DRAM x 2
* 128GB Intel Optane DCPMM x 2
 Linux kernel 5.3 with Ubuntu 18.04

 Benchmarks

CPU-0

Memory
Controller

Interconnection

CPU-1

DRAM
(node-0)

« SPECAccel (OpenMP)
« GraphMat (PageRank)

DCPMM
(node-2)

Memory
Controller

DRAM
(node-1)

« Graph500 (BFS)
 Liblinear

DCPMM
(node-3)

Performance evaluation

BD: background demotion
/1 CPM 3 OPM (BD)

[—1 Baseline (Stock Linux 5.3)
6.99x 3.69x

2.61x
2.48x :
242)(227)(

Speedup

graph500 GraphMat Liblinear 503.postencil 553.pclvrleaf _ 560.pilbdc

* Most benchmarks are improved by AutoTiering
* With CPM, speedup is up to 2.48x in 503 .postencil
* \With OPM (BD) , speedup is up to 6.99x in graph5e90

Effectiveness of AutoTiering-CPM

Distribution of Memory Usages

503.postencil 559.pmniGhost
Anonymous region Anonymous region
Q 60 = 607
- 50 ®
O Q9 Ll 404 =
n O : 30"
O — .
m Q 20- 20 A
(@) 10 4 I Node-3 (DCPMM)
g 0 0 I Node-2 (DCPMM)
D, [Node-1 (DRAM)
> 60 HEl Node-0 (DRAM)
. 60+
g 50
Q 40 A 40 E
= = 30
a. 20 204 1
O 10
0- T T T T 0-
0 500 1000 1500 2000 2500 3000 0 500 1000 1500
Time (s) Time (s)

AutoTiering-CPM makes better use of multi-tiered memory

Effectiveness of LAP classification

LAP levels

Lv.8
Lv.7
Lv.6
Lv.5
| Lv.4
| Lv.3
| Lv.2

v

Lv.0

.i
N w [o2] o o —
= 3 = = = =

Node-1 (DRAM)

of pages per memory node at LAP level
2

o o
S
L

Node-0 (DRAM)

Less effectively utilized

graph500
I 1
I |
|

H
=
Node-3 (DCPMM) || Node-2 (DCPMM)

-
=
1

=)
=
L

1000 1500 2000 2500

Time(s)

Stock Linux 5.3 version

500

o4

Upper-tier

Lower-tier

More effectively utilized

graph500

N w
z z
Node-0 (DRAM)

—
=

=]
=
f

N w
z =
Node-1 (DRAM)

-

=]
=
L

(™
=]
=2

©
=

wu
=

N
=

=]
=

~
2
Node-3 (DCPMM) || Node-2 (DCPMM)

A

of pages per memory node at LAP level

—l

N
=

=]
=
o
N
o
o

400 600 800

Time(s)

AutoTiering-OPM

1000

AutoTiering-OPM can promote frequently accessed pages
while demoting least accessed pages

Effect of hiding demotion latency

Measured page promotion latency (CDF) with ftrace
- OPMX: Opportunistic Page Migration with Exchange*

graph500 Liblinear 555.pseismic 560.pilbdc
= 1004 7100 < 1004 —_— i
S s L N S 100
) o4 o @
g 80 4 c 804 c 80+ Ccﬂ 80 4
© © © ©
c e fa Lo
g 2 2 S
U 601 U 60 U 60+ S 604
~ ~ S ~
=] = c c
0o o = 9
3 40 = 40 = 401 B 40 1
€ € IS €
o o 2 e
Q 20 Q 20 A Q201 Q 20
] ' ' 1
E —— OPM (BD) E —— OPM (BD) B — OPM (BD) E —— OPM (BD)
O o === OPMX O oA === OPMX O oA === OPMX O oA === OPMX
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Latency (us) Latency (us) Latency (us) Latency (us)

We can reduce the promotion latency by deferring the page demotion as background

*Nimble Page Management for Tiered Memory Systems [ASPLOS ‘19]

Is page exchange acutally needed?

Threads Threads
CPU-0 CPU-1 e
Interconnection 0};@‘ ‘eg\s’*
Memory Memory (2 e W)
Controller Controller (,Q\) 6696 a(?
| I " e SN
— /g R RN R R RN RN Y — 09‘3% QQS\N‘ *%%
=5 ‘ \\a ! == C O (/OQ
Y s i 000
(] \8/ } |~ - - f ,,,,,,,,,,,,,,,,, | ()] g/ /
-e Sea —”’
DCPMM DCPMM
(node-2) (node-3)

Page exchange scheme*

instead of copying data into new pages, we transfer data

between each pair of pages using copy thread(s) that use

CPU registers as the temporary storage for in-flight iterative

data exchange operations. This use of registers allows our

mechanism to avoid allocating a complete temporary page.
* Nimble Page Management for Tiered Memory Systems [ASPLOS ‘19]

Performance comparison with prior work

([] [} 2. Memory Tiering [LWN.net] X + (]
C' @ lwn.net/Articles/802544/ Y+ 0 (E. H @ m *» Q Update :
i Apps E ENDIC == NPR {8 Hacker News €5y CHASE [RH Videos - Microsof.. @@ $HAH0|A 7| » | B3 Other Bookmarks Reading List

@L‘, LvnveNt User: CJ Password: [] @ | (Subscribe) | (Register]

e e sorn Memory Tiering

Content

- From: Dave Han
Xeiﬁly Leafiten To: Linux-MM
chives Dan J" <d . .
Search Feaggmn A s+ ok 1 Intel Tiering-0.6 [36] 1 OPM (BD)
Kernel Subject: [RFC] Me; g 6 6
Security Date: Wed, 160 %> 0 -7 .
Bt Message- <c3d6dedq
Events calendar f&]::chive- Article U m
Unread comments ink: T q-)
link: -
LWN FAQ The memory hierarchy . N
Write for us playing an increasin — >
differentgroupsof m pEEER " B N NN NN SN " RN NN EER S H N NN E N EEE NN QN NN SN NN NN EEE RN m E E EEEEESESEESEESESESESEESSESEgE SN SE DN NN NN RN " EEn
Edition doing in this area aj x
Return to the folks asked was why E :
Announcements page At Intel, the primar | - C
memory (PMEM). We'd] O . —
without using its
slower DRAM. Keith J
automatically migrat C
of the reclaim proce x
modified autonuma to Qo 1 ksssnfpunnnjannnhonsnsunnnfEanndunnnfunnnfunnnfennnhonnuannshosssnnnnnfennndunnneennpuannnunnnhosngunnafnnnngdunnnjeannnpunns
We've tried to do th 3 O
persistent memory any
topologies. 8 4(7.;
We've been running t
comparing it to pure m O
results are encourag|
at the code or run t! Q -

individual patches s O
https://git.

and is tagged with " g(ap“soo G(ap\.\\\]\a‘. L\b\\“ea(

Note that internally
terribly easy to con|
"hmem"'s in the tree

503 Q08" o, 0o o (BN g0.p10%
. . 5 .

Summary

 Commodity OSes are not mature enough to support multi-tiered memory
systems

* \We explored new page placement schemes to extract the full benefits of
multi-tiered memory systems

* Future work

* Redesigning the kernel thread demoting page migration to DCPMM with the
consideration of limited memory bandwidth of DCPMM

« Adopting the newly added framework monitoring memory access pattern in Linux
kernel called DAMON to reduce the access tracking overhead

CPU

Memory
Controller

Cache miss 9

y

\’ Cache hit

TR
]
]

---1. DRAM Cache

__________________ (]
‘ Cache fill

Main memory
(Optane)

<€

>

Physical address space

-
-
-
-
-
-
P

Main memory
(Optane)

CPU-0 — CPU-1
Interconnection links
Memory Memory
Controller Controller

Not allowed

rerer—r-

- e wr do e ohe -

Direct-mapped cache

cmccaam-,y

- s en on o wte o o

6
4
B
L.

Memory block

HW-assisted tiered memory organization
(invisible DRAM to OS)

A Study of of Memory Placement on Hardware-assisted Tiered Memory Systems [IEEE CAL 2020]

HW-assisted tiered memory organization

* Transparent to software
« Any software modification is not required

* \WWe are curious about the commodity operating systems work well

 Modern memory management is highly optimized DRAM-only systems
« Without consideration of heterogenous (hybrid or tiered) memory systems
* Only NUMA characteristics are considered

« We revisit the design and implementation of operating systems

Recall memory placement: local-first

Let’s see how the local-first policy works on the HW-assisted tiered memory system

Not being utilized

Threads
1
|

CPU-0 — CRU-1
Interconnection links 1

Memory Memory

Controller Cohtroller

: Direct-mapped cache
|
lDRAMCachel Q---- EIIII Ia o
! L | Limited cache

Main memory
(Optane)

4
B

V'

1) | .
capacit
{ Nk pacity

The local-first placement policy leads to spending time back and forth between the
local DRAM cache and the Optane main memory while the remote DRAM cache is idle

AutoNUMA s considered harmful

Again, it is designed for DRAM-only systems

'I;hreads
|
CPU-0 __ GPU-1
Interconnection links i
Memory M= T <<= ===== = =1 = Memory
Controller g Controller

--4 DRAM Cache i

Inserting the block ,futd HEEEEEEE

P L d
a Evicting a cache block

Main memor

V4
’Ij, Main memory
(Optane) RN

(Optane)

~.9.o’

Migrating to local memory

AutoNUMA balancing may degrade performance on tiered memory systems. If the
local DRAM cache does not have enough space, the application can experience
frequent DRAM cache misses while not utilizing the remote DRAM cache

Our approach: dram-first

Exploiting such hardware characteristics in placing memory (pages)

Threads .J

0
CPU-0O1 — CPU-1
I Interconnection links
Memory : Memory
Controller | |- === T=====] ~ =|™ T8hirdller
))

Allow memory allocation
that can fit in DRAM cache

- -
- -
- -
-
-
-
-
-

-
-
-
-

Chunk #2
Main memory d Main-mémory

Do not always bring remote
(DRAM) pages

Preliminary results: latency & bandwidth

Experimental environments

- Intel Xeon Gold 5218 (16cores) x 2 sockets

- Two DRAM 16GB dimms and two DCPMM 128GB dimms per socket
- Linux kernel 5.3 with Ubuntu 18.04 server distribution

Seguential read

Sequential read

B 100 1 | 100
250 - ™ Local miss e & 40000 L
S~
—_ B Remote miss - 80 B’ o) L 50 ;
2 / 5 = 5
— 200 A R L 60 - + 30000 60 °
> R 0 S 0
e R 0 2 0
£ 1501 2 40 E S 20000 - . 40 E
© N4 s S - I s
- . < o 3 Local miss] i <
100 - -~ a ~ 10000 - |EEE Remote miss SRR O a
I_III_I -0 T T) Il_ -0
1I3 32 128 256 384 16 32 64 128 256 384
Working set size (GiB) Working set size (GiB)

—¥— default -4+ page-interleave -%~- dram-first —W¥— default @+ page-interleave -%~- dram-first

Remaining challenges in tiered memory systems

1. Demoting or migrating pages to Optane memory suffers from the limited
memory bandwidth and leads to write amplification problems

*Random write with 256B granularity

Throughput(GB/sec)
Throughput(GB/sec)

Optane DCPMM “ DDR4 DRAM

of threads # of threads

Remaining challenges in tiered memory systems

1. Demoting or migrating pages to Optane memory suffers from the limited
memory bandwidth and leads to write amplification problems

2. Minimizing DRAM cache conflict misses within an Optane memory node
« DRAM cache is organized as a direct-mapped cache

« Two more memory blocks cannot be mapped to a single cache set
* Note that the DRAM cache indexing scheme has not been disclosed

(O]
-E 1.5 &L @
C ((\,b(\% (,é\e
'% S
$ 1.0
x
()
o]
()
2 0.5
©
£
2
0.0

Graph500 XSBench Redis GUPS BTree HashJoin Canneal

Thank You!

Artifact available at https://qgithub.com/csl-ajou/AutoTiering

E-mail: [sahn@ajou.ac kr

JeOngseOb Ahn Web: https://ieongseob.github.io

‘@) AJOU UNIVERSITY

https://github.com/csl-ajou/AutoTiering
mailto:jsahn@ajou.ac.kr
https://jeongseob.github.io/

