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Abstract

Memory-based data center applications require increasingly
large memory capacities, but face the challenges posed by
the inherent difficulties in scaling DRAM and also the cost of
DRAM. Future systems are attempting to address these de-
mands with heterogeneous memory architectures coupling
DRAM with high capacity, low cost, but also lower per-
formance, non-volatile memories (NVM) such as PCM and
RRAM. A key usage model intended for NVM is as cheaper
high capacity volatile memory. Data center operators are
bound to ask whether this model for the usage of NVM
to replace the majority of DRAM memory leads to a large
slowdown in their applications? It is crucial to answer this
question because a large performance impact will be an im-
pediment to the adoption of such systems.

This paper presents a thorough study of representative ap-
plications – including a key-value store (MemC3), an in-
memory database (VoltDB), and a graph analytics frame-
work (GraphMat) – on a platform that is capable of emu-
lating a mix of memory technologies. Our conclusions are
that it is indeed possible to use a mix of a small amount
of fast DRAM and large amounts of slower NVM without
a proportional impact to an application’s performance. The
caveat is that this result can only be achieved through careful
placement of data structures. The contribution of this paper
is the design and implementation of a set of libraries and au-
tomatic tools that enables programmers to achieve optimal
data placement with minimal effort on their part.

With such guided placement and with DRAM constitut-
ing only 6% of the total memory footprint for GraphMat
and 25% for VoltDB and MemC3 (remaining memory is
NVM with 4⇥ higher latency and 8⇥ lower bandwidth than
DRAM), we show that our target applications demonstrate
only a 13% to 40% slowdown. Without guided placement,
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Parameter DDR-DRAM NVM
Capacity per CPU 100s of GBs Terabytes
Read Latency 1⇥ 2⇥ to 4⇥
Write bandwidth 1⇥ 1

8⇥ to 1
4⇥

Estimated cost 5⇥ 1⇥
Endurance 1016 106 to 108

Table 1: Comparison of new memory technologies [4, 46].
NVM technologies include PCM and RRAM [4, 46]. Cost
is derived from the estimates for PCM based SSDs in [33].
Since writes to write-back cacheable memory are posted, the
effect of NVM’s slower writes is lower bandwidth to NVM.
For reads, latency is the critical metric.

these applications see, in the worst case, 1.5⇥ to 5.9⇥
slowdown on the same configuration. Based on a realis-
tic assumption that NVM will be 5⇥ cheaper (per bit) than
DRAM, this hybrid solution also results in 2⇥ to 2.8⇥ better
performance/$ than a DRAM-only system.

1. Introduction

Data center applications like key-value stores [21, 45], in-
memory databases [15], and data analytics [29, 52] are being
used to handle exponentially growing datasets but cannot
tolerate the performance degradation caused by spilling their
workloads to disk. On the other hand, DRAM density (and
cost) is not scaling due to physical limitations [36, 46],
meaning that continuing to fit growing datasets in DRAM
will be unviable in the future.

To address this challenge, industry is exploring new non-
volatile memory technologies (or NVM) [6, 30, 46]. These
memory technologies are positioned between DRAM and
secondary storage (such as NAND flash), both in terms of
performance and cost. Table 1 quantifies this tradeoff. NVM
provides approximately 5⇥ the capacity at the same cost
as DRAM for less than an order of magnitude reduction
in performance (up to 4⇥ higher latency and 8⇥ lower
bandwidth).

The likely deployment of NVM is in systems that have a
mix of DRAM and NVM. Most of the memory in such sys-
tems will be NVM to exploit their cost and scaling benefits,
with a small fraction of the total memory being composed
of DRAM. Application developers and data center operators
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Abstract
Increasing memory demand and slowdown in technology
scaling pose important challenges to total cost of ownership
(TCO) of warehouse-scale computers (WSCs). One promising
idea to reduce the memory TCO is to add a cheaper, but
slower, “far memory” tier and use it to store infrequently
accessed (or cold) data. However, introducing a far memory
tier brings new challenges around dynamically responding
to workload diversity and churn, minimizing stranding of
capacity, and addressing brown�eld (legacy) deployments.

We present a novel software-de�ned approach to far mem-
ory that proactively compresses cold memory pages to e�ec-
tively create a far memory tier in software. Our end-to-end
system design encompasses new methods to de�ne perfor-
mance service-level objectives (SLOs), a mechanism to iden-
tify cold memory pages while meeting the SLO, and our
implementation in the OS kernel and node agent. Addition-
ally, we design learning-based autotuning to periodically
adapt our design to �eet-wide changes without a human in
the loop. Our system has been successfully deployed across
Google’s WSC since 2016, serving thousands of production
services. Our software-de�ned far memory is signi�cantly
cheaper (67% or higher memory cost reduction) at relatively
good access speeds (6 �s) and allows us to store a signi�-
cant fraction of infrequently accessed data (on average, 20%),
translating to signi�cant TCO savings at warehouse scale.

CCS Concepts • Computer systems organization →
Distributed architectures; • Software and its engineer-
ing→Memory management.

Keywords cold data, far memory, machine learning, mem-
ory, warehouse-scale computers, zswap
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1 Introduction
E�ectively scaling out awarehouse-scale computer (WSC) [7]
requires that all resource types be scaled in a balanced man-
ner, so that the overall resource ratios between compute,
memory, storage, and networking can satisfy the aggregate
workload requirements. Failing to scale one resource type
causes the others to be stranded, hurting the cost per perfor-
mance of the entire WSC. Consequently, scaling out WSCs
is often limited by the components that have the weakest
scaling behavior in terms of both performance and cost ef-
fectiveness.

In recent years, DRAM has become a critical bottleneck for
scaling the WSCs. The slowdown of device-level scaling (the
end of Moore’s law [35]) prevents the reduction in cost per
GB of DRAM [25, 27]. At the same time, the prevalence of in-
memory computing, particularly for big-data workloads, has
caused an explosive growth in DRAM demand. These two
trends have resulted in a global DRAM supply shortage in
recent years, posing serious challenges to the cost-e�ective
scaling of WSCs.
One promising direction that has been previously pro-

posed to reduce the cost of memory ownership is the intro-
duction of second-tier memory or far memory. Far memory
is a tier between DRAM and Flash that has lower cost per GB
than DRAM and higher performance than Flash. By intro-
ducing far memory into the memory hierarchy and storing
infrequently accessed (or cold) data into far memory, the sys-
tem can perform the same jobs with a lower DRAM capacity
or pack more jobs to each machine, both of which reduce
the total cost of ownership (TCO).

Session: VM/Memory ASPLOS’19, April 13–17, 2019, Providence, RI, USA
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Abstract
Software-controlled heterogeneous memory systems have
the potential to increase the performance and cost e�ciency
of computing systems. However they can only deliver on this
promise if supported by e�cient page management policies
and mechanisms within the operating system (OS). Current
OS implementations do not support e�cient tiering of data
between heterogeneous memories. Instead, they rely on ex-
pensive o�ining of memory or swapping data to disk as a
means of pro�ling and migrating hot or cold data between
memory nodes. They also leave numerous optimizations on
the table; for example, multi-threaded hardware is not lever-
aged to maximize page migration throughput, resulting in
up to 95% under-utilization of available memory bandwidth.
To remedy these shortcomings, we propose and imple-

ment a general purpose OS-integrated multi-level memory
management system that reuses current OS page tracking
structures to tier pages directly between memories with no
additional monitoring overhead. We augment this system
with four additional optimizations: native support for trans-
parent huge page migration, multi-threaded migration of
a page, concurrent migration of multiple pages, and sym-
metric exchange of pages. Combined, these optimizations
dramatically reduce kernel software overheads and improve
raw page migration throughput over 15⇥. Implemented in
Linux and evaluated on x86, Power, and ARM64 systems,
our OS support for heterogeneous memories improves ap-
plication performance 40% over baseline Linux for a suite
of real-world memory-intensive workloads utilizing a multi-
level disaggregated memory system.
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CCS Concepts • Computer systems organization →
Heterogeneous (hybrid) systems; • Software and its en-
gineering → Virtual memory.
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1 Introduction
Modern computing systems are embracing heterogeneity in
their processing andmemory systems. Processors are special-
izing to improve performance and/or energy e�ciency, with
CPUs, GPUs, and accelerators pushing the boundaries of
instruction and data level parallelism. Memory systems are
combining the best properties of emerging technologies that
may be optimized for latency, bandwidth, capacity, or cost.
For example, Intel’s Knight’s Landing uses a form of high
bandwidth memory called multi-channel DRAM (MCDRAM)
alongside DDR4 memory to achieve both high bandwidth
and high capacity [27, 28]. Non-volatile 3D XPoint memory
has been commercialized for next-generation database sys-
tems, and disaggregated memory may be a promising solu-
tion to capacity scaling for blade servers [41, 50]. Both CPUs
and GPUs are embracing heterogeneous memory with IBM
and NVIDIA having recently delivered supercomputers con-
taining high-bandwidth GPU memories and high-capacity
CPU memories [29, 38, 57, 58, 66, 67].
Figure 1 illustrates an abstract example of the memory

systems architects and OS designers will likely have to con-
sider in the future. These systems consist of a compute node
(CPU, GPU, or both) connected to multiple types of memory
with varying latency, bandwidth, and/or capacity properties.
Of course, the particular con�guration will vary by system.
The critical operating system support needed to enable

the vision of e�ciently moving data as programs navigate
di�erent phases of execution, each with potentially distinct

KLOCs: Kernel-Level Object Contexts for Heterogeneous
Memory Systems

Sudarsun Kannan Yujie Ren Abhishek Bhattacharjee
Rutgers University Yale Univeristy

ABSTRACT

Heterogeneous memory systems promise better performance, energy-

efficiency, and cost trade-offs in emerging systems. But delivering

on this promise requires efficient OS mechanisms and policies for

data tiering and migration. Unfortunately, modern OSes are lacking

inefficient support for data tiering. While this problem is known for

application data, the question of how best to manage kernel objects

for filesystems and networking—i.e., inodes, dentry caches, journal

blocks, socket buffers, etc.—has largely been ignored and presents

a performance challenge for I/O-intensive workloads. We quantify

the scale of this challenge and introduce a new OS abstraction,

kernel-level object contexts (KLOCs), to enable efficient tiering of

kernel objects. We use KLOCs to identify and group kernel objects

with similar hotness, reuse, and liveness, and demonstrate their

use in data placement and migration across several heterogeneous

memory system configurations, including Intel’s Optane systems.

Performance evaluations using RocksDB, Redis, Cassandra, and

Spark show that KLOCs enable up to 2.7× higher system throughput

versus prior art.

CCS CONCEPTS

• Software and its engineering → Virtual memory.
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1 INTRODUCTION

Memory heterogeneity is here. Emerging systems combine the best

properties of memory technologies optimized for latency, bandwidth,

capacity, persistence, and cost. Multiple DRAM nodes are being

augmented with die-stacked DRAM [15, 30, 45], high-bandwidth
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multi-channel DRAM (e.g., Intel’s Knight’s Landing [6]), and byte-

addressable NVMs (e.g., 3D XPoint in Intel Optane DC) [4, 14, 16].

While heterogeneous memory systems may offer better perfor-

mance, energy-efficiency, and cost trade-offs, they complicate mem-

ory management. Decades of research have demonstrated the chal-

lenge of data allocation and migration in multi-socket non-uniform

memory access (NUMA) architectures [7, 8, 10, 26, 33, 47]. Het-

erogeneous memory systems amplify this challenge by integrating

memory devices with more varied latency, bandwidth, and capacity

characteristics.

To optimize a heterogeneous memory system for performance,

one would ideally place the hottest data in the fastest memory node

(in terms of latency or bandwidth) until that node is full, the next-

hottest data would be filled into the second-fastest node up to its

capacity, and so on. As a program executes, its data would be peri-

odically assessed for hotness and re-organized to maximize perfor-

mance. For emerging software-controlled heterogeneous memory

systems, hotness detection and migration requires effective soft-

ware mechanisms and policies to determine data reuse and control

data migration. While it is possible for application developers to

orchestrate these tasks, efficient OS approaches that are transpar-

ent to the programmer are preferable because of their less onerous

programming model. Current OS mechanisms to measure reuse

and migrate data have, however, surprisingly high overheads and

have consequently been the subject of recent software and hardware

acceleration techniques [13, 19, 31, 33, 35, 37, 40, 50, 53, 57].

Unfortunately, most prior research on OS-directed data tiering

focuses on application-level data and ignores kernel objects. One

exception is recent work that migrates and replicates page tables

in DRAM devices in different sockets [11], but memory tiering of

kernel objects for storage and networking I/O remains unexplored.

This is because kernel objects have traditionally been thought to be

few in number, restricted in memory footprint, and less significant in

their impact on overall performance. This view is driven by network

and disk I/O speeds that are several orders of magnitude slower –

and hence more consequential to performance – than memory. But

while this was true in the past, advances in networking and storage

speeds now make memory management of kernel objects critical to

performance. We quantify the scale of this criticality by showing

that current approaches that ignore tiering of inodes, dentry caches,

journal blocks, network socket buffers, etc., leave as much as 4×

performance on the table. This paper’s central contribution is to

recover this wasted performance via a new OS abstraction, kernel-

level object contexts (KLOCs), that permits fluid tiering of kernel

objects.

The KLOC abstraction: KLOCs are logical groupings that capture

the kernel objects associated with OS entities requested by applica-

tions. Kernel entities requested by applications are files and sockets,

while kernel objects range from structures associated with files (e.g.,



A�multi-tiered�memory�system

• Modern�server�systems�have�formed�NUMA
• DRAM�and�DCPMM�share�the�memory�controller
• Since�Linux�5.0,�Optane�DCPMM�can�be�exposed�as�a�normal�RAM

• A�DCPMM�memory�node�is�treated�as�a�CPU-less�NUMA�node
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SW-managed tiered�memory�organization�
(A�DCPMM�memory�node�is�treated�as�a�CPU-less�NUMA�node)
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Memory�access�latency�and�bandwidth
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The�critical�factor�in�performance�is�not�only�access 
locality but�also�access tier of�memory
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State-of-the-art�Linux�kernel* has�not�considered�the�characteristics�of�fast�
(DRAM)�and�slow�(DCPMM)�memory�with�NUMA�properties

Default memory�placement:�local-first

Interconnection 
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*As�of�conducting�this�study,�we�used�the�Linux�kernel�version�5.3

Q.�Why�don’t�you�reorder�the�fallback�node�list�
according�to�the�actual�performance?



Limited�page�placement in�current�Linux
Why�not�AutoNUMA?

Migration paths Promotion paths
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Problems�(or�limitations)

1. Allocation�fallback�does�not�consider�access�tier.

2.�Pages�are�not�promoted�when�upper-tier�is�full

3.�Pages�are�never�demoted�or�reclaimed�to�lower-tier�memory

4.�Page�classification�is�too�coarse-grained�(binary:�active�or�inactive)

Problems�with�current�page�management



Exploiting�access�tier�first�and�then�locality
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Conservative�Promotion�or�Migration�à AutoTiering-CPM

AutoTiering-CPM provides�alternatives�for�page�migration�failure�due�to�fully�
occupied�target�memory�node,�leading�to�performance�improvement

However, the�upper-tier�(DRAM)�memory�can�still�hold�infrequently�accessed�data�
while�frequently�used�pages�reside�in�the�lower-tier�(DCPMM)�memory



Enforcing�page�promotion�and�migration

• Finding�the�least�accessed�page�(LAP)
1. Inactive�page�from�file-backed region
2. LAP�page�from�anonymous region
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Hiding�latency�of�page�eviction
A software�optimization�comes�to�rescue
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• System
• Intel(R)�Xeon�Gold�5218�CPU�@�2.30GHz�x�2
• 16GB�DRAM�x�2
• 128GB�Intel�Optane�DCPMM�x�2
• Linux�kernel�5.3�with�Ubuntu�18.04

• Benchmarks
• SPECAccel (OpenMP)
• GraphMat (PageRank)
• Graph500�(BFS)
• Liblinear

Experimental�environments
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Performance�evaluation

*�Most�benchmarks�are�improved�by�AutoTiering

2.48x
2.42x 2.27x

1.69x

*�With�CPM,�speedup�is�up�to�2.48x in�503.postencil

6.99x 3.69x

2.61x

2.31x

*�With�OPM(BD),�speedup�is�up�to�6.99x in�graph500

BD:�background�demotion



Effectiveness�of�AutoTiering-CPM

Distribution�of�Memory�Usages

AutoTiering-CPM makes�better�use�of�multi-tiered�memory



Effectiveness�of�LAP classification
More�effectively�utilized

Stock�Linux�5.3�version AutoTiering-OPM

Lower-tier

Less�effectively�utilized

AutoTiering-OPM can�promote�frequently�accessed�pages�
while�demoting�least�accessed�pages



Effect�of�hiding�demotion�latency�

We�can�reduce�the�promotion�latency�by�deferring�the�page�demotion�as�background

Measured�page�promotion�latency�(CDF)�with�ftrace
- OPMX:�Opportunistic�Page�Migration�with�Exchange*

*Nimble�Page�Management�for�Tiered�Memory�Systems�[ASPLOS�‘19]



Is�page�exchange�acutally�needed?

*�Nimble�Page�Management�for�Tiered�Memory�Systems�[ASPLOS�‘19]
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Performance�comparison�with�prior�work
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• Commodity�OSes�are�not�mature�enough�to�support�multi-tiered�memory�
systems

• We�explored�new�page placement�schemes�to�extract�the full�benefits of�
multi-tiered�memory�systems

• Future�work
• Redesigning�the�kernel�thread�demoting�page�migration�to�DCPMM�with�the�
consideration�of�limited�memory�bandwidth�of�DCPMM

• Adopting�the�newly�added�framework�monitoring�memory�access�pattern�in�Linux�
kernel�called�DAMON to�reduce�the�access�tracking�overhead

Summary
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HW-assisted tiered�memory�organization�
(invisible�DRAM�to�OS)
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A�Study�of�of�Memory�Placement�on�Hardware-assisted�Tiered�Memory�Systems [IEEE�CAL�2020]



HW-assisted tiered�memory�organization�

• Transparent�to�software
• Any�software�modification�is�not�required

•We�are�curious�about�the�commodity�operating�systems�work�well
• Modern�memory�management�is�highly�optimized�DRAM-only�systems

• Without�consideration�of�heterogenous�(hybrid�or�tiered)�memory�systems
• Only�NUMA�characteristics�are�considered

•We�revisit�the�design�and�implementation�of�operating�systems



Recall memory�placement:�local-first
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The�local-first placement�policy�leads�to�spending�time�back�and�forth�between�the�
local�DRAM�cache�and�the�Optane�main�memory�while�the�remote�DRAM�cache�is�idle�

Limited�cache�
capacity

Not�being�utilized

Let’s�see�how�the�local-first�policy�works�on�the�HW-assisted�tiered�memory�system



AutoNUMA is�considered�harmful
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Inserting�the�block

AutoNUMA balancing�may�degrade�performance�on�tiered�memory�systems.�If�the�
local�DRAM�cache�does�not�have�enough�space,�the�application�can�experience�
frequent�DRAM�cache�misses�while�not�utilizing�the�remote�DRAM�cache

Again,�it�is�designed�for�DRAM-only�systems



Our�approach:�dram-first
Exploiting�such�hardware�characteristics�in�placing�memory�(pages)�
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Preliminary�results:�latency�&�bandwidth

Experimental�environments
- Intel�Xeon�Gold�5218�(16cores)�x�2�sockets
- Two DRAM�16GB�dimms�and�two�DCPMM�128GB�dimms�per�socket�
- Linux�kernel�5.3�with�Ubuntu�18.04�server�distribution



1. Demoting�or�migrating�pages�to�Optane�memory�suffers�from�the�limited�
memory�bandwidth and�leads�to�write�amplification�problems

Remaining�challenges�in�tiered�memory�systems

#�of�threads #�of�threads

Optane�DCPMM DDR4�DRAM

*Random�write�with�256B�granularity



1. Demoting�or�migrating�pages�to�Optane�memory�suffers�from�the�limited�
memory�bandwidth and�leads�to�write�amplification�problems

2. Minimizing�DRAM�cache�conflict�misses�within�an�Optane�memory�node�
• DRAM�cache�is�organized�as�a�direct-mapped�cache
• Two�more�memory�blocks�cannot�be�mapped�to�a�single�cache�set
• Note�that�the�DRAM�cache�indexing�scheme�has�not�been�disclosed�

Remaining�challenges�in�tiered�memory�systems



Thank�You!
Artifact�available�at�https://github.com/csl-ajou/AutoTiering

E-mail:�jsahn@ajou.ac.kr
Web:�https://jeongseob.github.ioJeongseob�Ahn�

https://github.com/csl-ajou/AutoTiering
mailto:jsahn@ajou.ac.kr
https://jeongseob.github.io/

