
Fast and Efficient Model Serving
Using Multi-GPUs with Direct-Host-Access

Jinwoo Jeong Seungsu Baek Jeongseob Ahn



• Important to serve incoming inference requests with low latency
• Existing inference serving systems

• Keep DL models in GPU memory, enabling requests to be immediately served

DL Model Serving Systems

Request

Response

G
PU

Inference Server

CPU
Users

G
PU

G
PU

G
PU

2



• Number of DL models is growing every year

Growing Number of DL Models

Inference server provider’s concern:

More number of models

1. Limited GPU memory

2. Increasing the number of servers

3. Increasing the operating cost of servers 

3



Model CModel C

Cold-start

Leveraging Host Memory
• One promising approach to reduce the cost of GPU servers

• Extend the number of models beyond the GPU memory limit

4

Host Memory

Model A Model B Model D

GPU Memory
Model A Model B

PCIe

Capacity: 2

On-demand



Cold-start

Cold-Start Problem

5

Host Memory

Model A Model B Model C Model D

GPU Memory
Model A Model B

PCIe

Capacity: 2

Model CModel C

Bottleneck

• However, such the cold-start affects the quality of user experiences
• Makes it difficult to serve inference request within the desired SLO



Cold-start

Cold-Start Problem

6

Host Memory

Model A Model B Model C Model D

GPU Memory
Model A Model B

PCIe

Capacity: 2

Model CModel C

Bottleneck

• However, such the cold-start affects the quality of user experiences
• Makes it difficult to serve inference request within the desired SLO

The remaining challenge is to minimize the cold-start latency when 
loading deep learning models into GPU memory



• Pipeline the loading and execution of each layer
• Execute a layer as long as it is prepared in the GPU

27%

73% 75%

0%

20%

40%

60%

80%

100%

ResNet50 BERT-Base BERT-Large

In
fe

re
nc

e 
la

te
nc

y 
(%

)

Execution Stall

Pipelining Approach (Bai et al. OSDI’20)

Stall time still takes up
a large portion of inference time

Our work focused on reducing the stall time

Pipeline Approach

7* Z. Bai et al. Pipelined Context Switching for Deep Learning Applications (OSDI’20)



• Reducing the cold-start latency
1. Leveraging direct-host-access

• Applying direct-host-access to layers that can reduce stall time with direct-host-access

2. Leveraging parallel model transmission

• Further reduce stall time by using multi-GPUs when loading models

• Incorporating the above two approaches
3. DeepPlan: automatically generating optimal inference execution plans

Our Approaches

8



Two Methods for Computing on GPU

Load-then-execute

GPU

Memory

Host memory

PCIe

Direct-host-access

GPU

Memory

Host memory

PCIe

Data

9

cudaHostAlloc()

cudaMalloc()

Launch 

kernel

Launch 

kernel

Data

cudaMemcpy()

Data 1

2

3

1

2



• We analyzed the performance for layers used in popular DL models

Performance Analysis for Direct-Host-Access

Embedding: BERT-Base, Convolution: ResNet50, Fully Connected: BERT-Base

Apply DHA to layers which have performance benefits

10



1. DHA doesn’t need to reserve the GPU memory
Þ DL model can be served with less memory usage
Þ Keep more models in GPU memory

2. While GPU executes a layer using direct-host-access, it can simultaneously 
load other layers
Þ Reduce or even eliminate pipeline stall
Þ Speed up model execution

Advantages of Direct-Host-Access

11



L1L1L1

• Acceleration of L1 execution

Leveraging Direct-Host-Access

L1 L2

L2

Load

Exec
StallL1 StallL2Gain

Direct-host-access

In-memory execution

Load

12

2. Advance the loading of the L2 layer and the execution of the L1 layer

3. The L2 layer can start earlier than with the simple pipeline approach

1. Replace the L1 layer with direct-host-access



• Reduce stall time of the Ln layer

Leveraging Direct-Host-Access

L!"#Ln-2

Ln−1 Ln

Ln-1

Load

Exec Ln-3 Ln
StallLn

Direct-host-access

In-memory execution

Load

13

Ln-1Ln-2

LnLoad

Exec Ln-3 Ln
Gain

Before applying DHA

After applying DHA



• Utilize multi-PCIe lanes to load a single DL model
1. Divide the DL model into two partitions

2. Distribute the partitions across two GPUs

3. Merge the partitions into the GPU that has the first partition

Parallel-Transmission (PT)

Host memory

PCIe

GPU-0
Memory

GPU-1
Memory

NVLink

Model L1 L2 L3 L4 L5 L6L4 L5 L6L1 L2 L3

14
1 1

22

3



• Cooperative parallel-transmission with direct-host-access to accelerate 
model provisioning

Leveraging Parallel-Transmission

L5 L6 L7

L5 L6 L7
L2 L3 L4

L1 L2 L3 L4 L5 L6

Load
(GPU-1: secondary)

Stall

Load
(GPU-0: primary)

Exec
(GPU-0: primary)

Stall

Layer
forwarding

L7

15



• Modern DL models and GPU servers are becoming diverse and complex
• DL models have too many layers

• A wide variety of server environments

• Number of GPUs, GPU type, Interconnect, etc.

• Applying DHA and PT manually to the layers of models is challenging

• An automatic system could be needed to address these challenges

16

Challenges



DeepPlan
• Automatically generating an optimal inference execution plan for a given 

server environment and model

17



Experimental Setup

18

Hardware Setup Four V100 GPUs with NVLink (AWS p3.8xlarge instances)

Comparison Non-pipeline (Baseline), PipeSwitch* (OSDI’20), DeepPlan (Ours)

Framework LibTorch v1.9.1 (PyTorch C++)

Workloads
Vision models ResNet50, ResNet101

NLP models BERT, RoBERTa

Source code: https://github.com/csl-ajou/DeepPlan

* Z. Bai et al. Pipelined Context Switching for Deep Learning Applications (OSDI’20)

https://github.com/csl-ajou/DeepPlan


Single Inference with Batch Size 1

0

0.5

1

1.5

2

2.5

3

ResNet50 BERT-Base BERT-Large RoBERTa-Base

In
fe

re
nc

e 
sp

ee
du

p

Baseline PipeSwitch DeepPlan

1.94x
1.74x

2.21x

1.37x

• DeepPlan outperforms PipeSwitch across all models

19



• 99% latency, goodput, and cold-start

• Used Poisson distribution

• Target SLO: 100ms

• Maximum number of instances without 

violating SLO

• PipeSwitch: 120

• DeepPlan: 180

• Goodput at 180 concurrency

• Improved by 1.84x compared to PipeSwitch

• GPU memory space required for models

• DeepPlan keeps 24 more instances

Increasing the Number of Models

1.84x

PipeSwitch

24

20

DeepPlan



• Trace of Microsoft Azure Functions
• Heavy sustained requests, fluctuations and spikes

• 99% latency
• DeepPlan: 100ms ↓
• PipeSwitch: 150ms ↑

• Goodput
• DeepPlan: 98% ~ 99%
• PipeSwitch: 81% ~ 98%

Real-World Workloads (3 hours)

21

DeepPlan

PipeSwitch



• Cold-start affects the quality of user experiences

• We exploited DHA and PT for minimizing cold-start latency

• We built DeepPlan for automatically generating inference execution plans

• DeepPlan could significantly reduce the stall time and improve the 
performance of serving inferences

Conclusion

22



Thank You!
Fast and Efficient Model Serving

Using Multi-GPUs with Direct-Host-Access
Jinwoo Jeong, Seungsu Back, Jeongseob Ahn

jjw8967@ajou.ac.kr


