Accelerating LLM Serving for Multi-turn Dialogues with Efficient Resource Management

Jinwoo Jeong Jeongseob Ahn

Transformer-based Text Generation

Transformer-based Text Generation

Multi-turn Dialogues with a Chatbot

Multi-turn Dialogues with a Chatbot

Multi-turn Dialogues with a Chatbot

Prompt Rotterdam, Netherlands:			
Can you recommend tourist attractions in Rotterdam?	Sure! Here are some top tourist attraction in Rotterdam, Netherlands: 1. Erasmus Bridge …	Which of these is the closest to Postillion Hotel?	
To mainta	in context in a chat	session, a chatbot	
To mainta needs to asso	in context in a chat access the attention ciated with previous	session, a chatbot n KVs of all tokens sly exchanged	

Challenges of LLM Serving in Multi-turn

- 1. Repeatedly access the history to generate context-aware answer
 - Problem: Existing LLM serving systems recompute history KVs at every turns
 - Solution: Retaining history KVs in the memory hierarchy

→ FlashGen-Cache

- 2. Amplifying prompt length due to accumulation of history
 - Problem: Exacerbate a head-of-line blocking problem caused by FCFS
 - Solution: Reordering shorter prompt to fill available free space

→ FlashGen-Sched

Our solution: FlashGen

→ Integrates FlashGen-Cache and -Sched for efficient multi-turn LLM serving

Cost of Handling Multi-turn Prompts

- Current LLM serving frameworks (e.g., vLLM and TensorRT-LLM) takes an approach that **recompute** previous turns
 - → Leading to significant performance overhead due to recomputation

History KV Cache Hit Rate

- Under high request loads (e.g., increased concurrent users)
 - Both GPU and host memory become insufficient for caching history KVs

FlashGen-Cache

- Multi-level attention KV cache
 - Leverage GPU memory, host memory, and even storage

- KV Cache hit scenario
 - **1. GPU memory** → serve request immediately
 - **2. Host memory** \rightarrow load KVs to GPU memory
 - 3. Storage → stage KVs in host memory and load KVs to GPU memory

Scenario 1: Requested KVs in GPU Memory

- Upon a GPU cache hit
 - Serve the request with history KVs cached in GPU memory without recomputing them

Scenario 1: Requested KVs in GPU Memory

- Upon a GPU cache hit
 - Serve the request with history KVs cached in GPU memory without recomputing them

Scenario 2: Requested KVs in Host Memory

- Upon a GPU cache miss
 - If the history KVs are in host memory, transfer them to GPU memory

Scenario 2: Requested KVs in Host Memory

- Upon a GPU cache miss
 - If the history KVs are in host memory, transfer them to GPU memory

Scenario 2: Requested KVs in Host Memory

- Upon a GPU cache miss
 - If the history KVs are in host memory, transfer them to GPU memory

- Upon receiving a request
 - If its history KVs are not in host memory, stage them into host memory

- Upon receiving a request
 - If its history KVs are not in host memory, stage them into host memory

- If the staging phase cannot be hidden (i.e., waiting reqs < 1)
 - Recompute instead of retrieving from storage due to bandwidth limits

- If the staging phase cannot be hidden (i.e., waiting reqs < 1)
 - Recompute instead of retrieving from storage due to bandwidth limits

- If the staging phase cannot be hidden (i.e., waiting reqs < 1)
 - Recompute instead of retrieving from storage due to bandwidth limits

Head-of-Line Blocking

• FCFS scheduling causes the head-of-line blocking problem

Amplified Prompt Length in Multi-turns

Multi-turn dialogues amplify the prompt length of user queries
→ Leading to underutilization of GPU memory

FlashGen-Sched: Request Reordering

Reordering execution

FlashGen-Sched: Starvation-free Scheduling

• Upon R2 is completed, the occupied space is freed

Reordering execution

Starvation-free scheduling

FlashGen-Sched: Starvation-free Scheduling

• If the total memory of the promoted request and the remaining free space is enough for R3, preempt the prompted request

FlashGen-Sched: Starvation-free Scheduling

• Once preemption is completed, dispatch R3

Reordering execution

Starvation-free scheduling

 R_3

Evaluation Setup

	Azure instance: standard_NC48ads_A100_v4			
Hardwara Satun	GPUs	A100 (80GB) x 2ea		
naruware Setup	DRAM	440GB -> use 224 GB (50%) for caching KVs		
	Storage	NVMe SSD: 960GB x 2ea (RAID-0)		
Comparison	vLLM, *CachedAttention, FlashGen-Sched, FlashGen-Cache, FlashGen			
	Dataset	ShareGPT		
Workloads	Models	OPT: 13B, 30B		
		Llama-2: 13B, 70B		

* B. Gao et al. Cost-Efficient Large Language Model Serving for Multi-turn Conversations with CachedAttention (ATC'24)

End-to-End Latency & Throughput

All **FlashGen** schemes outperform **vLLM** in both latency & throughput

P95 Time To First Token (TTFT)

FlashGen drastically improves the responsiveness

Effectiveness of FlashGen-Sched

• FlashGen-Sched increases memory utilization

→ Allows for batching more requests, leading to higher throughput

	OPT-13B	OPT-30B	Llama-2 13B	Llama-2 70B	Average
vLLM	90.44	88.80	91.669	91.70	90.65
FlashGen-Sched	96.99	95.71	98.426	95.21	96.58

(a) Average GPU memory utilization

	OPT 13B	OPT 30B	Llama-2 13B	Llama-2 70B
FlashGen-Sched	1.15x	1.15x	1.06x	1.06x

(b) Increase in the average number of batched requests

Conclusion

• Problem

- Existing LLM frameworks are inefficient in serving multi-turn dialogues
- Increasing conversation turns lead to larger attention KV contexts and longer prompts

• Solution:

- Multi-level caching stores attention KVs in GPU, CPU, and SSD to minimize recomputation
- **Request reordering** improves GPU memory efficiency and reduces waste

• Result

• **FlashGen** achieves 1.63x better throughput while in a similar latency boundary

Thank You!

Accelerating LLM Serving for Multi-turn Dialogues with Efficient Resource Management

Jinwoo Jeong jwjeong@csl.korea.ac.kr Jeongseob Ahn jsahn@csl.korea.ac.kr

