Accelerating LLM Serving for Multi-turn Dialogues
with Efficient Resource Management

Jinwoo Jeong Jeongseob Ahn

=5 KORE A

UNIVERSITY

Transformer-based Text Generation

“Computer science” > ig”

¥ ¥

Decoder layer 1 Decoder layer 1
(Attention } (Attention }
FFN FFN
Decoder layer N Decoder layer N
(Attention A} (Attention A}
FFN FFN

¥ ¥

\\isll \\thell

Transformer-based Text Generation

“Computer science”

¥

Decoder layer 1

-

Attention

FEN

J

Decoder layer N -w

Attention

FEN

J

¥

A\ /4

KVs

\\: /7

Computer

science

KVs

Computer

science

IS

> IS

¥

Decoder layer 1 —W

Attention

FEN

.
L

J

(— Decoder layer N -w

Attention

FEN

L

J

N

\\thell

KVs

Computer

science

IS

KVs

Computer

science

IS

Multi-turn Dialogues with a Chatbot

| Can you recommend
tourist attractions in
Rotterdam? / _ : . -
Prormot Sure! Here are some top tourist attractions in
User P Rotterdam, Netherlands:

1. Erasmus Bridge
2. Market Hall
3. Cube Houses

Chatbot

Turn #1 _ Generation)
Which of these is the
closest to Postillion Hotel?
The Postillion Hotel & Convention Centre WTC
Prompt

Rotterdam is centrally located at Beursplein 37 / Meent
110, 3011 AA Rotterdam.

Among the previously mentioned attractions, the
Market Hall is the closest to the hotel.
Turn #2 _

Generation

Multi-turn Dialogues with a Chatbot

Previous turn #1 . Current turn #2

User “hatbot

Which of these is the closest to
Postillion Hotel?

/ —

Which of these is the
closest to Postillion Hotel?

Multi-turn Dialogues with a Chatbot

e Previousturn#1 . Current turn #2 aD y

_hatbot

Which of these is the closest to
Postillion Hotel?

To maintain context in a chat session, a chatbot

needs to access the attention KVs of all tokens
associated with previously exchanged

Challenges of LLM Serving in Multi-turn

1. Repeatedly access the history to generate context-aware answer
* Problem: Existing LLM serving systems recompute history KVs at every turns
 Solution: Retaining history KVs in the memory hierarchy
= FlashGen-Cache

2. Amplifying prompt length due to accumulation of history
« Problem: Exacerbate a head-of-line blocking problem caused by FCFS
« Solution: Reordering shorter prompt to fill available free space
= FlashGen-Sched

Our solution: FlashGen
=» Integrates FlashGen-Cache and -Sched for efficient multi-turn LLM serving

Cost of Handling Multi-turn Prompts

 Current LLM serving frameworks (e.g., vVLLM and TensorRT-LLM)

takes an approach that recompute previous turns

=» Leading to significant performance overhead due to recomputation

__600
E 450
& 300
Q

=
5 150

Bl Recomputing [1Caching w/ host [Caching w/ GPU

e Mo .I—I- II—I- I|_|-

0 256 512 1024 2048
History length

4096

- Model: OPT-13B
- GPU: A100 (80GB)
B | -

Prompt length: 256

History KV Cache Hit Rate

« Under high request loads (e.q., increased concurrent users)
« Both GPU and host memory become insufficient for caching history KVs

EGPU [1Host

40 Low hit rate

20

Dataset: ShareGPT
Model: OPT-30B
GPU: A100 (80GB)
Host memory: 224GB

KV hit rate (%)

Number of clients

FlashGen-Cache

 Multi-level attention KV cache
» Leverage GPU memory, host memory, and even storage

« KV Cache hit scenario

1. GPU memory - serve request immediately
2. Host memory - load KVs to GPU memory
3. Storage - stage KVs in host memory and load KVs to GPU memory

10

Scenario 1: Requested KVs in GPU Memory

« Upon a GPU cache hit

 Serve the request with history KVs cached in GPU memory without
recomputing them

Request queue KV Manager GPU memory
i Ry 1O | KV; | KV, | KVg
Request arrival order' History Max capacity: 3

Running Completed Waiting

11
*subscription means session ID

Scenario 1: Requested KVs in GPU Memory

« Upon a GPU cache hit

 Serve the request with history KVs cached in GPU memory without
recomputing them

Request queue KV Manager GPU memory
Ry, 1O - @1 KV | KV | KV
_ > Running .
Request arrival order Max capacity: 3
Running Completed Waiting

12
*subscription means session ID

Scenario 2: Requested KVs In Host Memory

« Upon a GPU cache miss
o If the history KVs are in host memory, transfer them to GPU memory

Request queue KV Manager GPU memory
R, 1O~ P KV; | KVg | KVg
Request arrival order' History Max capacity: 3

Host memory

KV, | KVs | KV | KV

Running Completed Waiting

13
*subscription means session ID

Scenario 2: Requested KVs In Host Memory

« Upon a GPU cache miss
o If the history KVs are in host memory, transfer them to GPU memory

Request queue KV Manager GPU memory
_____________ Evict —
iR O O+ KV, | KV | KVg
Request arrival order' History Max capacity: 3
é Host memory

!- ---------------- ’i KV2 KV3 KV6 KV8

Running Completed Waiting

14
*subscription means session ID

Scenario 2: Requested KVs In Host Memory

« Upon a GPU cache miss
o If the history KVs are in host memory, transfer them to GPU memory

Request queue KV Manager GPU memory
R, 1Ot - @ KV, | KVg | KVg
-———-; —————— I----z---
Request arrival order Run:l‘ung Max capacity: 3
é + Host memory

!- ---------------- ’i KV2 KV3 KV6 KV8

Running Completed Waiting

15
*subscription means session ID

Scenario 3. Requested KVs In Storage

« Upon receiving a request
o If its history KVs are not in host memory, stage them into host memory

4

Request arrival order

GPU memory
I(\/3 KV6 KVS
History Max capacity: 3

Storage T
X
KV, KV; | KV, IO/5
KV, [KV,

*subscription means session ID

Staging

Host memory

KV,

KV

KVs

KVg

Running

Completed . Waiting

16

Scenario 3. Requested KVs In Storage

« Upon receiving a request
o If its history KVs are not in host memory, stage them into host memory

4

Request arrival order

GPU memory
I(\/3 KV6 KV8
History Max capacity: 3

Storage T
X
KV, KV; | KV, IO/5 """
KV, [KV,

*subscription means session ID

-
-
-
-
-

Staging

Host memory

KV, | KVs

KVs

KVg

Running

Completed . Waiting

17

Scenario 3. Requested KVs In Storage

» If the staging phase cannot be hidden (i.e., waiting regs < 1)
« Recompute instead of retrieving from storage due to bandwidth limits

o ey
Request queue KV Manager GPU memory
B | hR4. KV3 | KVg | KVg
Request arrival order= History Max capacity: 3
— 1 o Host memory
Storage |
v KV, | KV3 | KV | KV
KV, | KV, | KV | KV, | KV:
KVg | KV, [KV | ...
\ o Running Completed Waiting

*subscription means session ID

18

Scenario 3. Requested KVs In Storage

« If the staging phase cannot be hidden (i.e., waiting regs < 1)
« Recompute instead of retrieving from storage due to bandwidth limits

Request arrival order

GPU memory

KV3 | KV | KVg

History

Max capacity: 3

Storage |
¥
KV, KV | KV, | KVs
KV, | KV,

*subscription means session ID

Host memory

KV, | KV5 | KV | KV

Running

Completed . Waiting

19

Scenario 3. Requested KVs In Storage

« If the staging phase cannot be hidden (i.e., waiting regs < 1)
« Recompute instead of retrieving from storage due to bandwidth limits

GPU memory

KV3 | KV | KVg

History

Max capacity: 3

*subscription means session ID

No staging

Host memory

KV, | KV5 | KV | KV

Running

Completed . Waiting

20

Head-of-Line Blocking

« FCFS scheduling causes the head-of-line blocking problem

Request queue

Scheduler | R, !

Not schedulsble @
GPU memory |

[
Ry R,

[] Allocated [] Free

Amplified Prompt Length in Multi-turns

« Multi-turn dialogues amplify the prompt length of user queries

=» Leading to underutilization of GPU memory

Dataset: ShareGPT

.............. === Prompt (w/o history)

—_-___._-—————.—
’ﬂ -
-
-
-

.t

Prompt (w/ history)

10 10° 10"
Sequence length (log scale)

»

lteration

Bl Occupied Demanded
(=]
S* 120
C
O
©
N 100 Y,
5
S
= 80
o
&
S 60
X 20000 21000 22000 23000

FlashGen-Sched: Request Reordering

Request queue

Request arrivarerder
Scheduler i !
| S 1 ——

GPU memory: i
R, R,

Reordering execution

Request queue

« Upon R2 is completed, the occupied space is freed

Request queue
Rs Ry | 1 Ry i

Request arrival order

p————
AREN IR
Request arr/v\a%cher]
\\,_____i
Scheduler i Ryt

GPU memory: i

Scheduler

GPU memory

Ry R

Reordering execution

Free
Starvation-free scheduling

FlashGen-Sched: Starvation-free Scheduling

24

FlashGen-Sched: Starvation-free Scheduling

« If the total memory of the promoted request and the remaining
free space is enough for R3, preempt the prompted request

Request queue Request queue
p=——= | ——————— 1
RS !_ R4 R3 RS R4 L___B;____i
Request arril/:77~cher : Request arrival order]
\"____-i
Scheduler i Ry Scheduler
I——.I.__
! 4
_0__ @Preempt
GPU memory: i GPU memory i
& [& 0 Ly

Reordering execution Starvation-free scheduling

25

« Once preemption is completed, dispatch R3

Request queue

Request queue
R5 R4 : R3 :
27

>/
Request arrival order |/

f————
Rs| 1 Ry Rs
Request arrivarerder
Scheduler L Ryt
I——1——
1

GPU memory: i

R R

S —
Scheduler; R; |
I T

GPU memoiy
R, R, |

Reordering execution

Starvation-free scheduling

FlashGen-Sched: Starvation-free Scheduling

26

Evaluation Setup

Azure instance: standard _NC48ads_A100 v4

GPUs A100 (80GB) x 2ea
Hardware Setup
DRAM 440GB -> use 224 GB (50%) for caching KVs
Storage NVMe SSD: 960GB x 2ea (RAID-0)
Comparison VvLLM, *CachedAttention, FlashGen-Sched, FlashGen-Cache, FlashGen
Dataset ShareGPT
Workloads OPT: 13B, 30B
Models

Llama-2: 13B, 70B

* B. Gao et al. Cost-Efficient Large Language Model Serving for Multi-turn Conversations with CachedAttention (ATC'24)

27

End-to-End Latency & Throughput

Shaded points indicate SSD involvement
-4~ FlashGen-Cache —&9—- FlashGen ‘

‘--s—- vLLM -+ CachedAttention -8 FlashGen-Sched

200

—
9]
o

—
o
o

Normalized latency
(ms / token)

)]
o

220 100 150 200 250
Throughput (tokens / s)

100 120 140 160 180 200
Throughput (tokens / s)

OPT 30B, 2 GPUs Llama-2 13B, 1 GPU

All FlashGen schemes outperform vLLM
in both latency & throughput

300

28

P95 Time To First Token (TTFT)

[B vLLM CachedAttention [[] FlashGen-Sched [[] FlashGen-Cache [l FlashGen
20 8
16.87 6.96
14.2 4

@ 15 6
>
Q10 279 4 3.46 -93%
Q 2.58
O
—1 5 2

0 0

OPT-30B

Llama-2 13B

FlashGen drastically improves the responsiveness

29

Effectiveness of FlashGen-Sched

 FlashGen-Sched increases memory utilization
=» Allows for batching more requests, leading to higher throughput

OPT-13B OPT-30B Llama-213B Llama-2 70B Average
vLLM 90.44 88.80 91.669 91.70 90.65
FlashGen-Sched 96.99 905.71 98.426 95.21 96.58

(a) Average GPU memory utilization

OPT 13B OPT 30B Llama-2 13B Llama-2 70B

FlashGen-Sched 1.15x 1.15x 1.06x 1.06x

(b) Increase in the average number of batched requests

30

Conclusion

* Problem
 Existing LLM frameworks are inefficient in serving multi-turn dialogues
 Increasing conversation turns lead to larger attention KV contexts and longer prompts

« Solution:

« Multi-level caching stores attention KVs in GPU, CPU, and SSD to minimize
recomputation

« Request reordering improves GPU memory efficiency and reduces waste

 Result

« FlashGen achieves 1.63x better throughput while in a similar latency boundary

31

Thank You!

Accelerating LLM Serving for Multi-turn Dialogues
with Efficient Resource Management

Jinwoo Jeong Jeongseob Ahn
jwjeong@csl.korea.ac.kr jsahn@csl.korea.ac.kr

s KOREA

UNIVERSITY

32

	슬라이드 1: Accelerating LLM Serving for Multi-turn Dialogues with Efficient Resource Management
	슬라이드 2: Transformer-based Text Generation
	슬라이드 3: Transformer-based Text Generation
	슬라이드 4: Multi-turn Dialogues with a Chatbot
	슬라이드 5: Multi-turn Dialogues with a Chatbot
	슬라이드 6: Multi-turn Dialogues with a Chatbot
	슬라이드 7: Challenges of LLM Serving in Multi-turn
	슬라이드 8: Cost of Handling Multi-turn Prompts
	슬라이드 9: History KV Cache Hit Rate
	슬라이드 10: FlashGen-Cache
	슬라이드 11: Scenario 1: Requested KVs in GPU Memory
	슬라이드 12: Scenario 1: Requested KVs in GPU Memory
	슬라이드 13: Scenario 2: Requested KVs in Host Memory
	슬라이드 14: Scenario 2: Requested KVs in Host Memory
	슬라이드 15: Scenario 2: Requested KVs in Host Memory
	슬라이드 16: Scenario 3: Requested KVs in Storage
	슬라이드 17: Scenario 3: Requested KVs in Storage
	슬라이드 18: Scenario 3: Requested KVs in Storage
	슬라이드 19: Scenario 3: Requested KVs in Storage
	슬라이드 20: Scenario 3: Requested KVs in Storage
	슬라이드 21: Head-of-Line Blocking
	슬라이드 22: Amplified Prompt Length in Multi-turns
	슬라이드 23: FlashGen-Sched: Request Reordering
	슬라이드 24: FlashGen-Sched: Starvation-free Scheduling
	슬라이드 25: FlashGen-Sched: Starvation-free Scheduling
	슬라이드 26: FlashGen-Sched: Starvation-free Scheduling
	슬라이드 27: Evaluation Setup
	슬라이드 28: End-to-End Latency & Throughput
	슬라이드 29: P95 Time To First Token (TTFT)
	슬라이드 30: Effectiveness of FlashGen-Sched
	슬라이드 31: Conclusion
	슬라이드 32: Thank You!

