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Turn #2

Turn #1

Multi-turn Dialogues with a Chatbot

User Chatbot

Can you recommend 
tourist attractions in 

Rotterdam?
Sure! Here are some top tourist attractions in 
Rotterdam, Netherlands:
1. Erasmus Bridge
2. Market Hall
3. Cube Houses
…

Prompt

Generation

Which of these is the 
closest to Postillion Hotel?

Prompt
The Postillion Hotel & Convention Centre WTC 
Rotterdam is centrally located at Beursplein 37 / Meent
110, 3011 AA Rotterdam.
Among the previously mentioned attractions, the 
Market Hall is the closest to the hotel. Generation
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To maintain context in a chat session, a chatbot 
needs to access the attention KVs of all tokens 

associated with previously exchanged



Challenges of LLM Serving in Multi-turn

1. Repeatedly access the history to generate context-aware answer
• Problem: Existing LLM serving systems recompute history KVs at every turns
• Solution: Retaining history KVs in the memory hierarchy
➔ FlashGen-Cache

2. Amplifying prompt length due to accumulation of history
• Problem: Exacerbate a head-of-line blocking problem caused by FCFS
• Solution: Reordering shorter prompt to fill available free space
➔ FlashGen-Sched

Our solution: FlashGen
➔ Integrates FlashGen-Cache and -Sched for efficient multi-turn LLM serving
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Cost of Handling Multi-turn Prompts

• Current LLM serving frameworks (e.g., vLLM and TensorRT-LLM) 
takes an approach that recompute previous turns 

➔ Leading to significant performance overhead due to recomputation
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• Under high request loads (e.g., increased concurrent users)
• Both GPU and host memory become insufficient for caching history KVs

History KV Cache Hit Rate
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FlashGen-Cache

• Multi-level attention KV cache
• Leverage GPU memory, host memory, and even storage

• KV Cache hit scenario

1. GPU memory → serve request immediately

2. Host memory → load KVs to GPU memory

3. Storage → stage KVs in host memory and load KVs to GPU memory
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Scenario 1: Requested KVs in GPU Memory

*subscription means session ID
11
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• Upon a GPU cache hit
• Serve the request with history KVs cached in GPU memory without 

recomputing them
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Scenario 2: Requested KVs in Host Memory

*subscription means session ID
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• If the history KVs are in host memory, transfer them to GPU memory

Max capacity: 3
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Scenario 2: Requested KVs in Host Memory

*subscription means session ID
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Scenario 3: Requested KVs in Storage

*subscription means session ID
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*subscription means session ID
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Head-of-Line Blocking

• FCFS scheduling causes the head-of-line blocking problem
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Amplified Prompt Length in Multi-turns
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• Multi-turn dialogues amplify the prompt length of user queries
➔ Leading to underutilization of GPU memory

18%

Dataset: ShareGPT



FlashGen-Sched: Request Reordering
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FlashGen-Sched: Starvation-free Scheduling
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FlashGen-Sched: Starvation-free Scheduling
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FlashGen-Sched: Starvation-free Scheduling
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Evaluation Setup

Hardware Setup

Azure instance: standard_NC48ads_A100_v4

GPUs A100 (80GB) x 2ea

DRAM 440GB -> use 224 GB (50%) for caching KVs

Storage NVMe SSD: 960GB x 2ea (RAID-0)

Comparison vLLM, *CachedAttention, FlashGen-Sched, FlashGen-Cache, FlashGen

Workloads

Dataset ShareGPT

Models

OPT: 13B, 30B

Llama-2: 13B, 70B

27* B. Gao et al. Cost-Efficient Large Language Model Serving for Multi-turn Conversations with CachedAttention (ATC’24)



End-to-End Latency & Throughput

All FlashGen schemes outperform vLLM

in both latency & throughput
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1.55x 1.63x 

Shaded points indicate SSD involvement 



FlashGen drastically improves the responsiveness

P95 Time To First Token (TTFT)
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Effectiveness of FlashGen-Sched

• FlashGen-Sched increases memory utilization
➔ Allows for batching more requests, leading to higher throughput

30

OPT-13B OPT-30B Llama-2 13B Llama-2 70B Average

vLLM 90.44 88.80 91.669 91.70 90.65

FlashGen-Sched 96.99 95.71 98.426 95.21 96.58

(a) Average GPU memory utilization

OPT 13B OPT 30B Llama-2 13B Llama-2 70B

FlashGen-Sched 1.15x 1.15x 1.06x 1.06x

(b) Increase in the average number of batched requests 



Conclusion

• Problem
• Existing LLM frameworks are inefficient in serving multi-turn dialogues

• Increasing conversation turns lead to larger attention KV contexts and longer prompts

• Solution:

• Multi-level caching stores attention KVs in GPU, CPU, and SSD to minimize 
recomputation

• Request reordering improves GPU memory efficiency and reduces waste

• Result

• FlashGen achieves 1.63x better throughput while in a similar latency boundary
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Thank You!
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