
Rethinking Remote Memory Placement
on Large-Memory Systems with Path Diversity

Wonkyo Choe, Sang-Hoon Kim, Jeongseob Ahn
Ajou University

Emerging multi-chip systems

• Data center utilizes multi-chip systems to build scale-up servers
• Memory controllers for each processor die

• Chip manufacturers is developing such systems
• AMD EPYC
• Intel Xeon

• Advanced point-to-point interconnect
• AMD Infinity Fabric (IF)
• Intel Ultra Path Interconnect (UPI)

A distinct feature of multi-chip systems

• All remote memory access latencies
are similar
• Local latency ~= 85 ns
• Remote latecny ~= 140 ns

If the latencies are not that different,
doesn’t it matter to allocate memory on any nodes?

Traditional NUMA systems

• Linux configures multi-chip systems as a cpu node
• Each node has own memory node

CPU-0

DIMM-0

CPU-1

DIMM-1

CPU-2

DIMM-2

CPU-3

DIMM-3

Default memory placement (first-touch)

• local memory is not enough
• Linux requires memory from other memory nodes
• Fallback node list determined when system boots

CPU-0

DIMM-0

CPU-1

DIMM-1

CPU-2

DIMM-2

CPU-3

DIMM-3

Thread A

1 2 3 4

Thread B

1 243

Our insight

1. Existing systems do not exploit diverse memory path (path
diversity)
• All remote latency is almost the same
• Static Linux’s fallback node list

2. Existing memory placement causes unintended interference
• Multiple applications would use the same memory node

Memory interference

• For example, two applications are running
• App A uses DIMM-0 & DIMM-1
• App B uses DIMM-1

CPU-0

DIMM-0

CPU-1

DIMM-1

CPU-2

DIMM-2

CPU-3

DIMM-3

App A App B

1. Memory Interference

2. Other memory idle

Our insight

1. Existing system not exploit diverse memory path
• Static Linux’s fallback node list
• All remote latency is almost the same

2. Existing memory placement causes unintended interference
• Multiple applications would use the same memory node

Hybrid & Usage-aware memory placement

Rest of the talk

• Hybrid & Usage-aware memory placement
• Performance evaluation
• Discussion
• Conclusion

Hybrid placement

• First-touch (Linux default) + page-interleave (round-robin allocation)
• Use first-touch when allocating local memory
• Use page-interleave when allocating remote memory

CPU-0

DIMM-0

CPU-1

DIMM-1

CPU-2

DIMM-2

CPU-3

DIMM-3

App A App B App C App D

Usage-aware placement

• First-touch (Linux default) + usage-aware
• Use first-touch when allocating local memory
• Allocate memory based on memory usage (allocation on the least usage)

CPU-0

DIMM-0

CPU-1

DIMM-1

CPU-2

DIMM-2

CPU-3

DIMM-3

App A App B App C App D

How we set our environment

• 4 sockets machine
• Intel Xeon Gold 6242: A single chip (16 physical cores) on each socket
• 16GB * 4 socket = total 64 GB memory capacity

• Linux kernel v5.3
• AutoNUMA enabled

• Benchmark
• Mcf / fotonik3d / cam4 from SPECCPU 2017
• MG from NAS parallel benchamrk
• GUPS from HPC Challenge benchmark
• Liblinear

Other consideration for evaluation

• Memory intensive workload on CPU-0 spills memory
• Eventually uses the remote memory
• MG / GUPS / Liblinear

• The rest of workloads on each CPU-X except CPU-0
• Use only the local memory

• Various mixed sets are experimented
• Few results are included in the paper

Performance comparison

• First-touch (FT)

• Page-interleave (PI)
• Allocate a page one by one on each node
• numactl

• Hybrid (HY)

• Usage-aware (UA)

Performance of Proposed polices

1. All proposed policies are improved over first-touch (FT)
2. Memory intensive workload (mg, liblinear, mcf) perf. Bounded

memory bandwidth
3. Page-interleave(PI) impairs other workloads, such as cam4 due to

memory interference

Pg
 (1odH 0)

PFI
 (1odH 1)

IotoniN3d
 (1odH 2)

FaP4
 (1odH 3)

haUPoniF
PHan

0.0

0.5

1.0

1
oU

P
al

iz
Hd

 (
xH

F.
 T

iP
H)T 3I HY UA

liElinHaU
 (1odH 0)

PFI
 (1odH 1)

IotoniN3d
 (1odH 2)

FaP4
 (1odH 3)

haUPoniF
PHan

0.0

0.5

1.0

1
oU

P
al

iz
Hd

 (
xH

F.
 T

iP
H)T 3I HY UA

2
3

Performance of Proposed polices

4. Not like PI, our proposed policies, Hybrid(HY) & Usage-aware(UA)
not impair cam4
• Overall, harmonic mean has improved on our policies

Pg
 (1odH 0)

PFI
 (1odH 1)

IotoniN3d
 (1odH 2)

FaP4
 (1odH 3)

haUPoniF
PHan

0.0

0.5

1.0

1
oU

P
al

iz
Hd

 (
xH

F.
 T

iP
H)T 3I HY UA

liElinHaU
 (1odH 0)

PFI
 (1odH 1)

IotoniN3d
 (1odH 2)

FaP4
 (1odH 3)

haUPoniF
PHan

0.0

0.5

1.0

1
oU

P
al

iz
Hd

 (
xH

F.
 T

iP
H)T 3I HY UA

4

Memory allocation graph

• For first-touch, mg significantly
interferes with mcf

• For page-interleave, all workloads
interferes with each other

• For Hybrid & Usage-aware, memory
interference little on mcf

0

10

0

10

0

10

0 1000
0

10

0 1000 0 1000 0 1000

Pg PFI IotoniN3G FaP4

0
HP

oU
y

Us
ag

H
(G

B)

TiPH (s)

)T

3I

HY

UA

1oGH 0 1oGH 1 1oGH 2 1oGH 3

Discussion

• Localizing data
• Increased remote accesses
• Hard for scheduler to minimize them

• Applying policies to different typologies
• Policy on different NUMA group & NUMA distance
• Allocate closest neighbor group and then faraway group

Conclusion

• Exploiting path diversity on multi-chip systems

• Simple memory placement for multiple applications
• Hybrid & Usage-aware

• Minimizing hot-spot or interference and show better performance.

