Linux/Android FS/MM/Storage Workshop 2025

Accelerating Page Migrations with
Intel Data Streaming Accelerator

Jongho Baik', Jonghyeon Kim’, Chang Hyun Park®, and Jeongseob Ahn$

+ 230568
QY UPPSALA
Q) UNIVERSITET

Appeared in IEEE Computer Architecture Letters, 24(1), 2025

Motivation : Traditional CPU-based Data Processing

Data generation, transfer, and processing are
escalating to unprecedented levels

In the same way, Datacenter Taxes
(e.g., memcpy, hashing) has grown fast

NUMA System, Tiered Memory (PMEM, CXL)
makes memory managing important

Google[ISCA ‘23] : up to 40% of CPU cycles
are spent on datacenter taxes

Facebook[ASPLOS ‘20] : up to 37% of

datacenter taxes are spent on memory
functions (e.g., memcpy, malloc, memmove).

mmm Core Compute mmm Datacenter Taxes B System Taxes

Spanner | [
BigTable | i ———
BigQuery | i ——

0 20 40 60 80 100
Execution Time (%)

Platform

Source: Profiling Hyperscale Big Data Processing, Gonzalez et al., ISCA ‘23

B Memory B Kernel M Hashing

B Synchronization B ZSTD Math
SSL C Libraries Miscellaneous
Math + C Lib + Misc.

Web 31 20
5 6

18

FB microservices
>
Q.
w
[y

Cachel
Cache2

Source: Accelerometer: Understanding Acceleration Opportunities for Data
Center Overheads at Hyperscale, Sriraman et al., ASPLOS ‘20

Intel® Data Streaming Accelerator

* On-chip accelerator since 4th Gen Xeon® processor

Data move, fill, compare, and more

 Offloads data copy and o] vl o [
data transformation operations i
. . i} ol |
* Freeing up CPU resources On-chip accelerators . g ’
- Intel DSA

(Increasing compute capacity)

[’3'3 CHA. LLC CHA, LLC |
%g & Cores Mesh & Coros Mesh
v

Accelerate data movement throughput

UP | Accelorston PClo PCle Acceleratons | UPL

Intel® Data Streaming Accelerator

* On-chip accelerator since 4th Gen Xeon® processor

» Data move, fill, compare, and more

 Offloads data copy and -

data transformation operations

* Freeing up CPU resources On-chip accelerators
(Increasing compute capacity) - Intel DSA

CHA, LLC e
& Cores Mesh

CHA, LG |
& Coros Mesh

» Accelerate data movement throughput

No attempt has been made to utilize DSA
for operating systems

PCle

Acceleratons | UP1

Where to assist OS as an memcpy accelerator?

* In the Linux kernel, memcpy () operates based on per page (e.g., 4 KB)

« To maximize the efficiency with DSA, we need to find tasks that moves
large amounts of data in the kernel

Where to assist OS as an memcpy accelerator?

* In the Linux kernel, memcpy () operates based on per page (e.g., 4 KB)

« To maximize the efficiency with DSA, we need to find tasks that moves
large amounts of data in the kernel

migrate pages()'

Where to assist OS as an memcpy accelerator?

* migrate pages () inthe Linux kernel :

Module Usage
Memory reclaiming | Move pages to different memory locations, facilitating the freeing of contiguous blocks of
(e.g., kswapd) memory and improving memory availability
kcompactd Relocate pages, compacting memory by consolidating free space into contiguous blocks,

which is beneficial for large allocation requests and performance

Move pages to memory nodes closer to the CPU that accesses them most frequently, impr-

NUMA balancing oving memory access latency and overall performance

During memory offlining (removing memory), migrate_pages is used to move pages out of

Memory hotplug the memory regions that are being removed

Promote hot pages classified by DAMON from the lower-tier to the upper-tier memory and

DAMON demote cold pages from the upper-tier to the lower-tier memory

Where to assist OS as an memcpy accelerator?

* migrate pages () inthe Linux kernel :

Such tasks in OS are critical

 Directly impact system performance and resource management
« Especially in HPC and large-scale data centers

Offloading Costs to DSA

« Offloading memory operations to DSA :

a Create DSA descriptors that specifies the tasks

9 Submit the descriptors to DSA workqueue

A processing engine (PE) of DSA dispatches a
descriptor from its workqueue

° Perform the operation

e Wait for completion

- OPCODE
- SRC_ADDR
-DST_ADDR
- DATA_SIZE

¥
¥

¢# 0se(d

L# 2sed

DSA

PE DSA descriptor #9

- DSA_ OPCODE_MEMMOVE
- 0x1000

- 0x4000

- 64KB

System Memory

Offloading Costs to DSA

* To create a descriptor in OS:

1. Create 2 scatter-gather(SG) tables
- Tracking src and dst pages, respectively

- Pages may not be contiguous

2. Map the SG tables to get DMA-capable addresses(IOVA)

3. Create DSA descriptors through DMA-mapped addresses

* After the operation is done:

4. Unmap the DMA-mappings and Clean up the SG tables

Offloading Costs to DSA

335.2us
200 N
175 CPU: N memcpy
DSA : [OCreate SG tables Il DMA addr. mapping FA DSA transfer 0 Unmap & Free

T 150+
3 \
L 1251
£

100

N
9]

=

e

CPU | DSA CPU ‘ DSA CPU | DSA CPU | DSA CPU | DSA CPU | DSA

16 32 64 128 256 512
Number of 4KB pages

o
Ya

<Performance breakdown of copying pages: CPU vs DSA>

Due to the offloading costs, DSA is preferred when the
number of pages exceeds 32

Accelerated migrate pages () with DSA

 Designed to exploit the performance advantages of DSA

 THRESHOLD : 32

e # pages > THRESHOLD

« Migrating pages with DSA

migrate_pages()

unmap pages

flush TLBs

y

Preprocessing |

| memcopy (w/ CPU) |

D
Postprocessing |

Copy each page iteratively

pages >
THRESHOLD

l

| create SG tables |

| map DMA addresses |

| submit DSA desc. |

| memcopy (w/ DSA) |

|free DSA resources|

Copying pages in a batch

Evaluation

* System
* Intel Xeon Gold 6430 CPU @ 2.10GHz x 2 sockets
« Each socket has 1 DSA device
« 128GB DDR5 DRAM per socket
* Linux kernel 6.8 with Ubuntu 22.04

* Benchmark
* Memory Compaction: kcompactd
* Memory Promotion: DAMON
« XSBench
* GAP Benchmark(SSSP)

Fragmentation score

Evaluation: Memory Compaction (kcompactd)

 Proactive Compaction

« Start when the node's fragmentation score exceeds the high threshold(90)

» For defragmentation and Reduce higher-order memory allocation latencies

* DSA shows an improved throughput of 1.2x

O
N

—— CPU :

90 proactive_compact _node()
88 1
86 1
841 CPU -
82 T T T T T
80 N 0 100000 200000 300000 400000 500000
. RN Throughput (#pages/sec)

§P §? <@9 é& §P §ﬁ &P S? @P

Time (seconds)

Evaluation: Memory Promotion (DAMON)

« HMSDK merged into DAMON for memory tiering (e.g., CXL Memory)

» Emulation: lowering the uncore frequency of the remote NUMA node

« Memory Promotion : Promoting data from slow-tier to fast-tier memory

« For SSSP, it improves the execution time by 31%

[Fast-tier 1 Slow-tier [DAMON(CPU) [DAMON (DSA)

>

- : 500000 '
88201 1 | !
59 ' —~ 400000 A)
$E1s, i 59 i
5.0 . 22300000 .

+ I (@) I
T4 1.0 ! S5 3 |
Q0 ! © @ 200000 - !
=% | =y |
c 3057 i Z 100000 :
S g | |
Z £ 0.0 0

XSBench SSSP XSBench SSSP

Evaluation: Page size and Performance Interference

» Base (4KB) page vs. large (2MB) page)

[I:I Create SG tables Il DMA addr. mapping P71 DSA transfer 1 Unmap & Free

wraenase /7777000000000 000
XS i

0 25 50 75 100 125 150 175 200
Time (us)

 Contention in DSA

* Non-sharing: user and kernel threads use two different PEs, respectively

 Sharing: a single PE is shared by the user and kernel threads

vnsnarns | [0 00
shar 9'/////////////////////////

100 125 150 175 200
Time (us)

Summary & Future work

* Traditional CPU-based memory operations are not negligible in system
performance and efficiency

* Accelerating migrate pages () with DSA can lead to more efficient
memory management and improve overall system performance

« We plan to explore the other kernel components that can benefit from DSA

» Storage and network related memory copy operations

* Also, we need to search for the right abstraction for such accelerators

 Coordination for both applications and kernel

Thank You!

	Slide 1: About me: 안정섭
	Slide 2
	Slide 3: Motivation : Traditional CPU-based Data Processing
	Slide 4: Intel® Data Streaming Accelerator
	Slide 5: Intel® Data Streaming Accelerator
	Slide 6: Where to assist OS as an memcpy accelerator?
	Slide 7: Where to assist OS as an memcpy accelerator?
	Slide 8: Where to assist OS as an memcpy accelerator?
	Slide 9: Where to assist OS as an memcpy accelerator?
	Slide 10: Offloading Costs to DSA
	Slide 11: Offloading Costs to DSA
	Slide 12: Offloading Costs to DSA
	Slide 13: Accelerated migrate_pages()with DSA
	Slide 14: Evaluation
	Slide 15: Evaluation: Memory Compaction (kcompactd)
	Slide 16: Evaluation: Memory Promotion (DAMON)
	Slide 17: Evaluation: Page size and Performance Interference
	Slide 18: Summary & Future work
	Slide 19: Thank You!

