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Motivation : Traditional CPU-based Data Processing

Data generation, transfer, and processing are
escalating to unprecedented levels

In the same way, Datacenter Taxes
(e.g., memcpy, hashing) has grown fast

NUMA System, Tiered Memory (PMEM, CXL)
makes memory managing important

Google[ISCA ‘23] : up to 40% of CPU cycles
are spent on datacenter taxes

Facebook[ASPLOS ‘20] : up to 37% of

datacenter taxes are spent on memory
functions (e.g., memcpy, malloc, memmove).
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Intel® Data Streaming Accelerator

* On-chip accelerator since 4th Gen Xeon® processor
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Intel® Data Streaming Accelerator

* On-chip accelerator since 4th Gen Xeon® processor
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Where to assist OS as an memcpy accelerator?

* In the Linux kernel, memcpy () operates based on per page (e.g., 4 KB)

« To maximize the efficiency with DSA, we need to find tasks that moves
large amounts of data in the kernel



Where to assist OS as an memcpy accelerator?

* In the Linux kernel, memcpy () operates based on per page (e.g., 4 KB)

« To maximize the efficiency with DSA, we need to find tasks that moves
large amounts of data in the kernel

migrate pages()'



Where to assist OS as an memcpy accelerator?

* migrate pages () inthe Linux kernel :

Module Usage
Memory reclaiming | Move pages to different memory locations, facilitating the freeing of contiguous blocks of
(e.g., kswapd) memory and improving memory availability
kcompactd Relocate pages, compacting memory by consolidating free space into contiguous blocks,

which is beneficial for large allocation requests and performance

Move pages to memory nodes closer to the CPU that accesses them most frequently, impr-

NUMA balancing oving memory access latency and overall performance

During memory offlining (removing memory), migrate_pages is used to move pages out of

Memory hotplug the memory regions that are being removed

Promote hot pages classified by DAMON from the lower-tier to the upper-tier memory and

DAMON demote cold pages from the upper-tier to the lower-tier memory




Where to assist OS as an memcpy accelerator?

* migrate pages () inthe Linux kernel :

Such tasks in OS are critical

 Directly impact system performance and resource management
« Especially in HPC and large-scale data centers




Offloading Costs to DSA

« Offloading memory operations to DSA :

a Create DSA descriptors that specifies the tasks

9 Submit the descriptors to DSA workqueue

A processing engine (PE) of DSA dispatches a
descriptor from its workqueue

° Perform the operation

e Wait for completion
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Offloading Costs to DSA

* To create a descriptor in OS:

1. Create 2 scatter-gather(SG) tables
- Tracking src and dst pages, respectively

- Pages may not be contiguous

2. Map the SG tables to get DMA-capable addresses(IOVA)

3. Create DSA descriptors through DMA-mapped addresses

* After the operation is done:

4. Unmap the DMA-mappings and Clean up the SG tables



Offloading Costs to DSA
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Due to the offloading costs, DSA is preferred when the
number of pages exceeds 32



Accelerated migrate pages () with DSA

 Designed to exploit the performance advantages of DSA

 THRESHOLD : 32

e # pages > THRESHOLD

« Migrating pages with DSA

migrate_pages()

unmap pages

flush TLBs

y

Preprocessing |

| memcopy (w/ CPU) |

D
Postprocessing |

Copy each page iteratively
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| create SG tables |

| map DMA addresses |

| submit DSA desc. |

| memcopy (w/ DSA) |

|free DSA resources|

Copying pages in a batch




Evaluation

* System
* Intel Xeon Gold 6430 CPU @ 2.10GHz x 2 sockets
« Each socket has 1 DSA device
« 128GB DDR5 DRAM per socket
* Linux kernel 6.8 with Ubuntu 22.04

* Benchmark
* Memory Compaction: kcompactd
* Memory Promotion: DAMON
« XSBench
* GAP Benchmark(SSSP)



Fragmentation score

Evaluation: Memory Compaction (kcompactd)

 Proactive Compaction

« Start when the node's fragmentation score exceeds the high threshold(90)

» For defragmentation and Reduce higher-order memory allocation latencies

* DSA shows an improved throughput of 1.2x
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Evaluation: Memory Promotion (DAMON)

« HMSDK merged into DAMON for memory tiering (e.g., CXL Memory)

» Emulation: lowering the uncore frequency of the remote NUMA node

« Memory Promotion : Promoting data from slow-tier to fast-tier memory

« For SSSP, it improves the execution time by 31%
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Evaluation: Page size and Performance Interference

» Base (4KB) page vs. large (2MB) page)
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 Contention in DSA

* Non-sharing: user and kernel threads use two different PEs, respectively

 Sharing: a single PE is shared by the user and kernel threads
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Summary & Future work

* Traditional CPU-based memory operations are not negligible in system
performance and efficiency

* Accelerating migrate pages () with DSA can lead to more efficient
memory management and improve overall system performance

« We plan to explore the other kernel components that can benefit from DSA

» Storage and network related memory copy operations

* Also, we need to search for the right abstraction for such accelerators

 Coordination for both applications and kernel



Thank You!
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