
A Load Balancing Technique for Memory Channels
Byoungchan Oh

University of Michigan
Ann Arbor, Michigan

bcoh@umich.edu

Nam Sung Kim
University of Illinois at

Urbana-Champaign
Champaign, Illinois
nskim@illinois.edu

Jeongseob Ahn
Ajou University
Suwon, Korea

jsahn@ajou.ac.kr

Bingchao Li
Civil Aviation University of China

Tianjin, China
bcli@cauc.edu.cn

Ronald G. Dreslinski
University of Michigan
Ann Arbor, Michigan
rdreslin@umich.edu

Trevor Mudge
University of Michigan
Ann Arbor, Michigan

tnm@umich.edu

ABSTRACT
The performance needs of memory systems caused by growing
volumes of data from emerging applications, such as machine
learning and big data analytics, have continued to increase.
As a result, HBM has been introduced in GPUs and through-
put oriented processors. HBM is a stack of multiple DRAM
devices across a number of memory channels. Although HBM
provides a large number of channels and high peak band-
width, we observed that all channels are not evenly utilized
and often only one or few channels are highly congested after
applying the hashing technique to randomize the translated
physical memory address.

To solve this issue, we propose a cost-effective technique to
improve load balancing for HBM channels. In the proposed
memory system, a memory request from a busy channel can
be migrated to other non-busy channels and serviced in the
other channels. Moreover, this request migration reduces
stalls by memory controllers, because the depth of a memory
request queue in a memory controller is effectively increased
by the migration. The improved load balancing of memory
channels shows a 10.1% increase in performance for GPGPU
workloads.

CCS CONCEPTS
• Hardware → Dynamic memory; • Computer systems or-
ganization → Single instruction, multiple data;

KEYWORDS
DRAM, HBM, GPU, Memory Controller, Work Stealing
ACM Reference Format:
Byoungchan Oh, Nam Sung Kim, Jeongseob Ahn, Bingchao Li,
Ronald G. Dreslinski, and Trevor Mudge. 2018. A Load Balancing

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6475-1/18/10. . . $15.00
https://doi.org/10.1145/3240302.3240306

Technique for Memory Channels. In The International Symposium
on Memory Systems (MEMSYS), October 1–4, 2018, Old Town
Alexandria, VA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3240302.3240306

1 INTRODUCTION
Graphic Processing Units (GPUs) have developed for 3D
graphics, games, and animations, and evolved for general
purpose high performance computing [13, 21, 27]. GPU’s
on-chip computing capability has been improved rapidly in
the past two decades [10]. However, the scaling of off-chip
memory bandwidth has not followed the increasing comput-
ing capability. Thus, the memory bandwidth often becomes
a bottleneck limiting application performance [19]. Tradition-
ally, GDDR memories have been used for GPUs. They are
throughput-optimized DDR and whose the latest generation
is GDDR5. However, GDDR5 has challenges in increasing
memory bandwidth, because its interface is narrow (16 or
32 per chip) and fast (up to 7Gbps per pin). Although high
date rate is good for high bandwidth, it can only be achieved
by consuming high power. In addition, the small number of
I/Os provided from GDDR5 requires many memory chips to
be accommodated in GPUs to achieve high bandwidth. As a
result, the required power and area make GDDR5 prohibitive
beyond 1 TB/s of memory bandwidth [8].

High Bandwidth Memory (HBM) has been developed to
overcome limited bandwidth of GDDR5 under the given
power budget and form factor [1, 17, 26]. HBM is an on-
package stacked DRAM and provides high peak bandwidth
(∼256 GB/s) through multiple (up to 8) and wide channels
(128 I/Os per channel). For the power efficiency, data rate
(i.e., double of clock speed in DDR) and thus supply volt-
age are lowered in HBM, but the increased number of I/Os
and channels results in higher peak bandwidth than that of
GDDR5-based GPUs. In other words, the high peak band-
width of HBM stems from a number of memory channels.
Therefore, high bandwidth can be achieved in HBM when all
HBM channels are utilized well. However, it is hard to evenly
utilize all memory channels for all applications because each
application has different memory access pattern. Moreover,
substantial imbalance on memory channels still remains after

https://doi.org/10.1145/3240302.3240306
https://doi.org/10.1145/3240302.3240306

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA Byoungchan Oh et al.

applying an XOR-based address mapping scheme, which ran-
domizes the address mapping to avoid excessive contention
on one or few memory channels/banks [35, 36].

To address this issue, we propose a cost-effective technique
to improve load balancing for HBM channels. Our technique
is conceptually similar with the work stealing technique used
in multi-core scheduling, where an idle core steals a work
item in a busy core and the load is balanced across multiple
cores [4, 25]. Similarly, in our proposed HBM-based memory
sub-system, a memory request in a busy channel is migrated
to another non-busy channel and issued through that channel.
Then, the migrated request is rerouted to its original mem-
ory device. However, in traditional GDDR5-based memory
sub-systems, this simple load balancing technique is hard
to apply because of mainly two reasons. First, memory con-
trollers and their physical channels are placed on the different
side of the host processor chip. Thus, the memory request
migration requires global interconnection across the whole
chip. Second, in order to reroute the migrated requests, extra
off-chip interconnections to connect all off-chip GDDR5 chips
are needed. Considering the cost to implement extra internal
and external interconnections, the load balancing on memory
channels by migration and rerouting would be impractical in
the traditional GDDR5-based system. However, unlike the
GDDR5-based system, the HBM-based system has several
advantages in implementing this load balancing technique.
First, multiple memory controllers for one HBM are locally
placed because they are connected to the same chip having
multiple DRAM devices. Thus, the local interconnections can
enable the memory request migration. Second, one HBM has
8 channel. The DRAM dies have multiple ports that combine
to form the 8 channels. Rerouting of the memory request can
be performed inside of HBM. Because each DRAM die for a
channel has the physical connection of all TSVs and this con-
nection can be electrically controlled, a simple modification
in HBM can implement the rerouting.

In our proposed memory system, if a channel is highly con-
gested whereas other channels are not, the memory request
migration is triggered. Then, the migrated memory request
is rerouted to its original DRAM device by controlling elec-
trical connection of TSVs in HBM. Through this balancing
technique, the imbalance on memory channels is reduced by
7% on average. Moreover, because this request migration
effectively increases the depth of memory request queue in a
memory controller by occupying other memory controller’s
queue, the stall by memory sub-system is reduced. These
improved load balancing and queue depth, in turn, bring
10.1% of GPU performance improvement (up to 26%).

2 BACKGROUND
2.1 Increasing Demand of Memory Capacity and

Bandwidth
The increasing volume of data to be processed by machine
learning and big data analytics demands data parallel archi-
tectures such as Single Instruction Multiple Data (SIMD)

Host

Processor

Host

Processor

Off Chip

DRAM

Stacked

DRAM

Interposer

GDDR5-based GPU System HBM-based GPU System

M.C

M.C

M.C

M.C

M.C

M
.C

M
.C

M.C: Memory

Controller

Figure 1: GPU systems with GDDR5 and HBM.

Logic Die

CH0 CH1
CH2 CH3
CH4 CH5
CH6 CH7
CH0 CH1
CH2 CH3
CH4 CH5
CH6 CH7

eFuse
Decoder

DQ
T

S

V

CMD
ADD

EN T

S

V

EN

EN
EN

eFuse
Decoder

DQ
T

S

V

CMD
ADD

EN T

S

V

EN

EN
EN

8-CH PHY

mBIST IEEE1500

µBump

Logic Die

DRAM Die

Bank

Bank
Group

MUX MUX

CH0

CH2

Figure 2: 3D structure of an HBM and a simple example of
TSV connections to DRAM dies.

and Single Instruction Multiple Threads (SIMT) architec-
tures [12, 32]. Especially, GPUs become the de facto standard
and, in turn, the state-of-the-art servers in clouds and data-
centers are equipped with GPUs to speed up general purpose
computation (i.e., General Purpose computing on Graphics
Processing Units (GPGPU)) [27]. Because GPUs have been
designed to improve the throughput of applications by spawn-
ing many threads simultaneously, the capacity and bandwidth
of memory have played an essential role in building high per-
formance applications. For example, in many programming
models in GPGPU applications such as nearest neighbor
classifiers, decision trees, and neural networks, the size of
GPU memory often imposes limitations on the data size, re-
sulting in decreased performance by continually transferring
data from the system’s memory to the GPU’s memory [6]. In
addition, because many of GPGPU applications are memory
intensive and sometimes exhibit irregularity in their memory
access patterns, their performance is significantly affected by
memory bandwidth [5].

2.2 High Bandwidth Memory
HBM and HBM-based systems. Memory bandwidth has been
continuously increased to meet GPU performance growth.
However, in traditional GDDR5-based systems, there are
mainly two challenges in increasing memory bandwidth. First,

A Load Balancing Technique for Memory Channels MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA

the increased memory bandwidth brings a significant increase
in the power budget for memory and this power budget
is becoming prohibitive as the bandwidth scales beyond 1
TB/s [8]. Because GDRR5 is connected to a host processor
through fast (up to 7Gbps per pin) and narrow (16 or 32
per chip) external I/O interface, its energy-per-bit presents
high (∼14pJ/bit). Second, GDDR5 can limit form factors.
As shown in Fig. 1(left), GDDR5 requires a large number of
memory chips to reach high bandwidth because of its narrow
channel. Also, to build a large memory system with a given
density of GDDR5, more memory chips are needed. The
large footprint by GDDR5 does not only affect form factors,
but this also degrades the signal integrity on the memory
interface because of long connection distance [15, 23].

HBM, which is an on-package stacked DRAM, has been
introduced to overcome power and form factor challenges
of GDDR5. Unlike GDDR5, HBM employs a slow (∼2Gbps
per pin) and wide (128 per channel) channel and accordingly
supply voltage becomes lowered (1.5V -> 1.2V)1. In addition,
since HBM has multiple stacked DRAM dies and is connected
to the host processor via silicon interposer within a package,
this system can accommodate a large number of memory
devices with a small space as shown in Fig. 1(right).
TSV connections. Fig. 2 depicts the internal structure of
HBM. An HBM is made with various capacity, the number of
stacked layers and channel configurations [17]. In this study,
the baseline HBM has 1Gb capacity and 2 half-channels per
DRAM die and total 8 DRAM dies (total 8Gb). All DRAM
dies are fabricated identically and thus all they are physically
connected to TSVs for 8 channels. Then, a set of TSVs for
certain channels can be electrically connected to one of the
DRAM dies by using tri-state buffers with the decoder logic
shown in the left of Fig. 2. During a manufacturing step, a
Stack ID (SID) is programmed to the decoder to enable or
disable the tri-state buffers by using electrical fuses (efuses).
We describe an example of this physical and electrical connec-
tions between TSVs and DRAM dies in Fig. 2(right), where
the set of TSVs have physical connections to both DRAM
dies but only the bottom DRAM die for CH0 is electrically
connected to the TSVs.
Bank group structure. The bank group feature, which is used
in GDDR5 and DDR4, is, also, adopted in HBM [17, 18, 24].
We describe the organization of a DRAM device with and
without the bank group feature in Fig. 3. As shown in Fig. 3a,
all banks are connected to one internal shared data bus. Tra-
ditionally, in order to bridge the gap between slow data
transfer speed on the shared bus and fast interface speed,
data are transferred on the shared bus in parallel and then
serialized out the interface with multiple clock cycles (a.k.a
n-prefetch). In this structure, if the speed gap is increased,
the prefetch length and accordingly burst length, which de-
termine memory transaction and LLC line sizes, should be

1In this study, we take HBM generation 2 (HBM2) as a baseline.
However, we do not differentiate HBM and HBM2 in this study because
main features of them, such as wide I/O, multi channels and 3D stacked
DRAM dies, are almost same.

BANK 0

Shared I/O

BANK 2 BANK 4 BANK 6

BANK 1 BANK 3 BANK 5 BANK 7

MEM CH

(a) Memory organization without bank group

BANK 3

Sh
ar

ed
 I/

OBANK 0

BANK 4

BANK 2

MULTIPLEX MEM CH

BANK 3

BANK 0

BANK 4

BANK 2

Sh
ar

ed
 I/

O

B
A

N
K

 G
R

O
U

P
 1

B
A

N
K

 G
R

O
U

P
 0

(b) Memory organization with bank group

Figure 3: Comparison between two memory organiza-
tions [24].

increased together to keep seamless burst read/write opera-
tions. Furthermore, bank-level parallelism in this structure
does not improve much with the number of banks because of
the limited scalability of the single shared bus. In order to
avoid increasing prefetch length and improve the parallelism,
the bank group feature has been introduced as depicted in
Fig. 3b. In the bank group structure, multiple banks groups
(typically, 4 or 8 groups, 4 by default in this study) have their
own internal data bus and multiple banks (2 or 4 banks, 4 by
default) in a bank group share one data bus. As the result
of the separated data bus, multiple sets of data can be con-
currently transferred between the interface and bank groups.
However, different timing constraints, tCCDS and tCCDL, are
applied when accessing banks in different bank groups and
the same bank group, respectively. tCCDL is the minimum
time between two read commands (or write commands) when
accessing the same bank group and determined by the data
transfer time on the shared data bus in the bank group.
However, tCCDS is the minimum time between two read com-
mands (or write commands) when accessing different bank
groups and not determined by the data transfer time because
two read accesses are served on different buses in different

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA Byoungchan Oh et al.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Sk
e

w
n

e
ss

of Memory Request
Memory Service Time

2.514

Figure 4: Channel utilization and memory service time.

bank groups. Thus, the bank level parallelism in a bank group
is still preserved, but the bank group level parallelism is a
higher degree of parallelism.

3 CHALLENGES IN MANY CHANNEL
MEMORY SYSTEMS

3.1 Imbalanced Channel Utilization
In general, the memory address mapping scheme is designed
considering both spatial locality and parallelism [7]. For ex-
ample, consecutive cache line accesses are scheduled to the
same row in the same bank to take advantage of shorter
latency when row buffer hit. On the other hand, accessing
blocks of cache line alternates between multiple banks and
channels by exploiting bank- and channel-level parallelism.
However, depending on workloads memory system can suf-
fer from excessive contention on one or few certain banks
and channels. To prevent this situation, a permutation-based
mapping scheme (i.e., hashing), in which channel and bank
selections are determined by XORing a subset of MSB-side
bits, has been proposed [35, 36]. Although this technique par-
tially randomizes memory accesses, it is hard to completely
eliminate the imbalanced memory requests on all channels
and banks.

Fig. 4 shows the skewness of total memory requests and
service time across 8 channels of an HBM. The skewness is
defined to the ratio of the minimum value to the maximum
value. If the address mapping scheme is ideal and thus all
channels receive the equal number of memory requests, the
skewness of total memory requests becomes 1. Although the
skewness of total memory requests is closed to 1 in many
workloads due to XORing applied in the address mapping
scheme, some workloads exhibit high skewness. Furthermore,
this imbalance on the total number of memory requests
is amplified on the service time, which is defined to the
total time spent to serve all memory requests in a memory
controller, as shown in Fig. 4. Because spatial and temporal
locality in each channel can be different with the same number
of requests, they can make different scheduling scenario and
result in non-equal memory service time in each channel.

Processor 0 Processor 1

Scheduler 0 Scheduler 1

Steal

Figure 5: Simple diagram for work stealing.

The imbalanced memory requests and utilization across the
memory channels can negatively affect overall performance
by hindering exploiting full capability of all memory channels.
Work stealing, which is a well-known scheduling technique for
multi-core systems, has been proposed to balance workloads
and improve performance [4, 25]. We describe the simplified
mechanism of the work stealing in Fig. 5. If a processor is idle
(processor 1) is idle, it looks at the queue of another processor
(processor 0) and steals its work if there are outstanding
works. In this case, because all processors are identical, a
work item can be executed in any processor. Therefore, the
load balancing technique for memory channels like the work
stealing can be considered to a good solution for imbalanced
memory channels. However, the load balancing technique
cannot be simply applied to the traditional GDDR5-based
system, because each memory request (the work item in the
work stealing) has its own memory address and it must be
served in the preassigned memory device by the address.
In other words, if a memory request is migrated to other
channels and issued through the other channels, it must be
rerouted and served in its initially assigned memory device
based on the address.

3.2 Implementation Challenges of Memory
Controllers

Having large request queues in the memory controller is gen-
erally beneficial to the performance because of mainly two
reasons. First, the request queue is the buffer to mitigate the
gap between fast input and slow service speeds of memory
requests [22]. Thus, the queue depth determines the capa-
bility to hold the number of outstanding requests and this
can significantly affect the performance when workloads are
memory-intensive. Second, there are more chances to make
better scheduling decisions (i.e., shorter latency) in larger
queues [2]. For instance, a First-Ready First-Come-First-
Served (FR-FCFS [29, 38]) scheduler can make more row
hits with a larger queue because the scheduler observes more
memory requests and this increases the probability to find

A Load Balancing Technique for Memory Channels MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA

0.9

1.0

1.1

1.2

1.3

1.4

N
o

rm
al

iz
e

d
 IP

C

8 16 32 64

Figure 6: Performance according to the queue depth.

DATA
(CH N)

CMD
(CH N)

CH N

CH2

CH1

Write Queue

Read Queue
Timing Registers

CMD
(CH0)

DATA
(CH0)

Bank N

Bank 0

Ordering Logic

Command Queue

Transaction
Processing

Comparator

Open Row Add

Hit Cmd

Arbiter

CH0

Figure 7: Schedulers of the memory controller in many chan-
nel memory systems [16].

memory requests corresponding to the scheduling priority.
However, there are fewer row hits with a smaller queue be-
cause of limited visibility to memory requests. Fig. 6 depicts
the performance improvement according to the number of
queue entries with various GPGPU applications. Based on
workloads and their memory intensity, the sensitivity of per-
formance improvement to the queue depth varies, but most
workloads show higher performance with larger queues.

Unfortunately, in practice, it is hard to implement a so-
phisticated scheduling policy on a large queue. For example,
in order to enable an FR-FCFS policy, the row address of all
outstanding requests in the queue should be compared to the
address of the already open row per bank every cycle [30, 37].
Such a fully associative search demands Content Address-
able Memories (CAMs). The design cost of CAM combining
with the scheduling logic super-linearly increases with the
increase of the number of queue entries [2, 28]. Furthermore,
as depicted in Fig. 7, each memory channel needs its own

CH0 CH1 CH0 CH1

Original queue Unified hierarchical queue

Full !
1st Level
Queue

2nd Level
Queue

Sch
ed

u
ler

Sch
ed

u
ler

M
igrato

r
Sch

ed
u

ler

M
igrato

r
Sch

ed
u

ler

Figure 8: Hierarchical queue structure.

independent memory controller. Therefore, the area of mem-
ory controllers has a significant impact on total chip area in
many channel memory systems.

4 OVERVIEW OF THE PROPOSED DESIGN
In previous sections, we discussed why all memory channels
are not evenly utilized and the request redistribution tech-
nique such as work stealing cannot be simply applied to
memory systems. In addition, we observed performance im-
provement with large request queues in memory controllers,
but it is hard to implement large queues with a FR-FCFS
scheduling policy, because of the super-linearly increasing
design cost as a result of the number of queue entries. With
such observations, we propose a new memory system design
to mitigate the imbalance of channel utilization and effec-
tively increase the queue depth without increasing the actual
queue size. In brief, our design allows memory requests to
be inserted in, and issued from, any memory controller be-
longing to the same HBM. Then, the memory request issued
through other channels is rerouted inside of the HBM. The
bank group feature enables us to concurrently serve multiple
requests in the same memory device. There are three key
observations which led to the proposed design; (1) multiple
memory controllers for one HBM are placed locally, (2) in an
HBM, all TSVs have physical connections to all DRAM dies
and a set of TSVs constituting a channel can be electrically
connected to any DRAM die by the decoder logic, and (3)
multiple sets of data can be transferred concurrently inside
of DRAM having bank group feature. In the remainder of
this section, we first present the memory controller design
and scheduling policy for our new design and then introduce
the new HBM architecture.

4.1 Re-architecting Memory Controllers
In general, each memory controller for each channel operates
independently. In other words, each memory controller does
not communicate with one another. There were studies to
propose a technique to coordinate all memory controllers by

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA Byoungchan Oh et al.

connecting them to each other [7, 20]. Exchanging the sched-
uling status of each memory controller or globally applying a
single scheduling priority can improve performance, because
a single memory channel can be accessed by multiple threads
and memory requests issued by a single thread can spread
across multiple different channels. However, because memory
controllers for different channels are often placed on opposite
side of the chip as shown in Fig. 1, it is hard to implement
the global interconnection between memory controllers in a
traditional GDDR5-based system.
Unified Queue Structure. Unlike GDDR, where one chip pro-
vides only 32 I/Os and two chips compose one channel, one
HBM provides 8 channels and accordingly the 8 memory
controllers for the one HBM can be placed locally as shown
in Fig. 1. Therefore, the interconnection between these mem-
ory controllers can be, also, implemented locally. With this
observation, we propose a hierarchical queue structure as
shown in Fig. 8. In our hierarchical queue, one large queue
is split into two smaller queues. Because of the super-linear
relation between the size of a queue and area, we can save the
area by dividing the large queue. The saved area is used to
implement crossbars. (Detail area analysis will be discussed
in Sec. 5.3.)

In the proposed memory system, a memory request in a
channel can be migrated to one of the other channels having
room to accept the memory request through the crossbar.
In the example of Fig. 8, each channel has a 4-entry request
queue and channel 0 (CH0) is already full. In this case, the
upper level of the memory controller (e.g., last level cache)
cannot issue a memory request to CH0 and thus it is stalled,
because there is no entry to accept the memory request in
CH0 as shown in Fig. 8(left). However, if a memory request in
CH0 is migrated to CH1 and thus one empty entry is created
in CH0, CH0 can keep accepting memory requests without
incurring stalls in its upper level (right in Fig. 8). Therefore,
this technique can effectively increase the queue depth and
accordingly reduce the stall of the last level cache.
Channel Borrowing. In addition to the increased queue depth,
we allow issuing memory requests migrated from different
channels. As a result, the migration reduces overall queuing
delay because the memory requests migrated from a busy
channel and issued through idle (or less busy) channels do
not experience long waiting time in the queue. Note that the
memory request issued through a different channel from its
original channel must be rerouted to its original channel’s
DRAM device. Also, a DRAM device should have the ca-
pability to handle more than two memory requests at the
same time because multiple requests can be sent to the same
DRAM device through different channels. To address these
issues, we exploit the facts that all DRAM dies (all channels)
have physical connections to all TSVs and the bank group
structure is capable of serving multiple requests concurrently.
The cost-effective implementation inside of HBM will be
discussed in the next section.

There are several challenges in scheduling the memory
requests migrated from other channels. First, each memory
controller must consider the timing constraints and bank

RD1

ACT0
CMD
CH0

tRRD_S

ACT2

CMD
CH1

ACT1

ACT0
CMD
CH0

tRRD_S

ACT2

CMD
CH1

ACT1

ACT0
CMD
CH0

tRRD_S

CMD
CH1

ACT1ACT1

tRRD_S violation!

ACT1 ACT2

Cannot move

ACT2

Migration
Early issue

Migration

tRRD_S

u

v

w

time

time

time

Figure 9: Limited scheduling by the timing constraints.

status of all other channels to avoid command/data collision
and timing violations. DRAM has various timing constraints
which must be considered in scheduling memory requests
in order to guarantee correct memory operations inside of
DRAM (e.g., tRCD2), provide the power recovery time after
high power consumption (e.g., tRRDS3) and avoid data colli-
sion on the memory bus (e.g., tCCDS). Hence, the scheduler
in a memory controller has to abide by all timing constraints
for all other channels as well as that for its channel when
issuing memory requests. In Fig. 9, for example, CH0 has three
memory requests requiring an activation command (ACT) and
CH1 has no request to issue (1). In this case, if only tRRDS for
each channel is considered, the second ACT command (ACT1)
in CH0 can be migrated to CH1 and can be issued through
CH1’s memory bus and ACT2 can be issued earlier in CH0
(2). Although ACT0 and ACT1 can be issued through different
channels, they will meet in the same DRAM device and make
a tRRDS violation. In order to avoid the violation, ACT1 in CH1
must be issued after tRRDS is elapsed from ACT0 issued in CH0.
In addition to the delayed ACT1, ACT2 in CH0 must consider
when ACT1 is issued in CH1 and cannot be issued earlier as
shown in Fig. 9(3). Therefore, this scheduling example does
not have any benefit. Furthermore, this unuseful scheduling
is even possible only when each memory controller considers
the timing constraints of all channels and bank status of all
other memory controllers.

Second, it is hard to determine the priority of the memory
requests with the mixed memory requests having different

2minimum time between activation and read/write commands
3minimum time between two activation commands for different banks
in different bank group

A Load Balancing Technique for Memory Channels MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA

RD0 RD1

RD1

DATA0

RD3

DATA1 DATA3

OK, if tCCD_S is kept

DATA2

RD2

Issue early

CMD
CH0

DATA
CH0

CMD
CH1

DATA

CH1

Migration

RD2

tCCD_S

tCCD_S

time

time

Figure 10: An example of avoiding the timing constraints.

channel addresses. As discussed in Sec. 3.2, an FR-FCFS
scheduler compares the address of all outstanding requests
to already open row addresses of all banks. Because a bank
address of the memory request migrated from other channels
should be considered by another independent bank regardless
of the same bank address (e.g., BANK0-CH0 and BANK0-CH1),
this request migration can effectively increase the number of
banks to be considered for the scheduling. Thus, the schedul-
ing complexity and accordingly the design complexity increase
by the increased number of banks.

Considering the two challenges described above, the sched-
uling memory requests including migrated one from other
channels is practically impossible. In order to overcome these
challenges, we only migrate memory requests which meet the
predefined conditions. The first condition is that the memory
request has the different bank group address from that of
all outstanding memory requests in the second level queue.
Because we exploit bank group level parallelism inside of
DRAM, the memory requests having different bank group
address can be served in DRAM at the same time. In other
words, if the memory requests having the same bank group
address are issued through the different channel at the same
time, DRAM cannot accept all of them because there is only
one shared internal I/O for a bank group inside of DRAM.
Second, the memory request having currently open row’s
address is migrated to other channels. In other words, row
commands (i.e., ACT and PRE) have to be issued in the orig-
inal channel and column commands (i.e., RD and WR) can
be issued in any channel. This second condition enables the
avoidance of all timing violations related to internal mem-
ory operations (e.g., tRCD and tRRD). Then, the migrated
memory request can be treated as a native memory request
in a memory controller. As shown in Fig. 10, RD1 migrated
from CH0 can be issued through CH1 unless it violates tCCDS
of CH1, which is tCCD for different bank group accesses and
thus RD2 in CH0 can be issued earlier. Rule 1 summarizes all
conditions for the migration.

As we discussed earlier, the migration increases the number
of banks to be considered in scheduling requests. However, in
the proposed memory system, the memory requests going to
the open row are only migrated. In other words, all migrated
requests are ready to issue unless they violate tCCDS. Rule

Rule 1: Migration conditions at the 1st level

1. Full of their 2nd level queue—Only when the 2nd level
queue is full, requests are migrated to other channels.
Normally, requests are served in their original channel.

2. Room of other 2nd level queues—Only when the 2nd

level queue has enough room, where more than half
of entries are not occupied, requests are migrated to
this queue.

3. Different bank group—Requests having different bank
group address from that of the outstanding requests
in the 2nd level in the same memory controller are
migrated to avoid the collision on the internal memory
I/O for the same bank group.

4. Column command—Requests having no need to issue
row commands are migrated to avoid timing violation
inside of DRAM.

Rule 2: Scheduling priorities at the 2nd level

1. Migration—Migrated requests which are always ready
to issue are prioritized over native requests.

2. Open row (FR-FCFS)—Row-hit requests are priori-
tized over row-miss requests. This priority is only
applied to native requests.

3. Arrival time (FCFS)—Older requests are prioritized
over younger requests.

2 describes the priorities for the scheduling decision at the
second level of queues. Note that FR-FCFS requires the same
number of comparators with the number of banks (typically,
16). However, to search the migrated requests only one small
comparator is enough, because unlike the comparators for FR-
FCFS which compare row addresses (15 bits for the baseline
HBM) per bank, the comparator for the migrated requests
only compares channel addresses (3 bits for the baseline
HBM).

4.2 Re-architecting HBM
As we discussed in Sec. 2.2, all channels in an HBM have
physical connections to all DRAM dies and a set of TSVs
constituting a channel can be electrically connected to any
DRAM die. In addition, the bank group structure enables
DRAM to concurrently transfer multiple requests inside of
DRAM because each bank group has an individual separated
I/O. Motivated by these observations, we introduce alterna-
tive paths inside of HBM to serve more memory requests as
shown in Fig. 11. In the original design, the DRAM die as-
signed for CH7 is only electrically connected to a set of TSVs
constituting CH7 and a memory request coming from the
TSVs of CH7 is transferred to bank group 0 through the 4:1
muxes/demuxes. Because in the original design, only one set
of TSVs is connected to this DRAM die and only one memory
request is issued to a channel at a time, one set of muxes/de-
muxes can relay the memory request to a bank group and

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA Byoungchan Oh et al.

TSV (CH7)

TSV (CH2)

TSV (CH1)

TSV (CH0)

Bank
Group 3

8:1 MUX
/DEMUX

4:1 MUX
/DEMUX

8:1 MUX
/DEMUX

4:1 MUX
/DEMUX

8:1 MUX
/DEMUX

Bank
Group 0

4:1 MUX
/DEMUX

Bank
Group 1

Bank Group
Address

Channel
Address

Tri-State
 B

u
ffe

rs

DRAM Die (CH7)

Bank
Group

8:4 Crossbars

Proposed Design

T
S

V
s

8:1 MUX
DEMUX

4:1 MUX
DEMUX

Bank
Group 2

TSV (CH0)

TSV (CH7)

TSV (CH2)

TSV (CH1)

Bank
Group 0

Bank
Group 3

Bank
Group 2

Bank
Group 1

4:1 MUX
/DEMUX

Bank Group
Address

MUX

Tr
i-

St
at

e
 B

u
ff

e
rs

DRAM Die (CH7)

Bank
Group

Original Design

T
S

V
s

Figure 11: Original HBM and the proposed HBM with crossbars.

Table 1: Configured System

Component Specification
Number of SM 15
Maximum Threads per SM 1536
L1 Data Cache per SM 16 KB
Number of Memory Channel 8
L2 Cache per Memory Channel 128 KB
Compute Core / Interconnect /
Memory Clock 1000/1000/1000 MHz

DRAM Scheduling Policy FR-FCFS

HBM Configuration per channel
8Gb, 128 I/Os,
2KB pages, 4 bank groups,
4 banks per bank group

HBM Timing Parameters (tCK)

tRC=47, tRCD=14, tRP=14,
tRRDS=4, tRRDL=6, RL=14,
WL=2, tCCDS=1, tCCDL=2,
tRTPS=3, tRTPL=4, tWR=14

only one bank group can receive a memory request at a time.
However, in our proposed HBM, any DRAM die is electri-
cally connected to any set of TSVs by the crossbars. Hence, a
memory request coming from any channel can be relayed to
any bank group through the 8:4 crossbars, consisting of sets
of 8:1 muxes/demuxes and 4:1 muxes/demuxes as shown in
Fig. 11(right). Based on the channel address of a request, the
tri-state buffers and the first stage multiplexers (8:1 muxes)
are controlled. Then, the bank group address is used for
the second stage multiplexers (4:1 muxes). In Fig. 11(right),
for example, two memory requests are sending to the same
DRAM die of CH7 through CH0’s and CH7’s TSVs, respectively.
Although the two requests are issued from different memory
controllers and transferred through different channel’s buses
and TSVs, they are relayed to the same DRAM die because
of their same channel address. However, they have different
bank addresses and are eventually arrive in different bank
groups. Also, no collision of memory requests occurs in the
crossbars (i.e., the requests coming from different TSVs, but
going to the same bank group), because memory requests
having different bank group addresses can be issued through
different channels at the same time in the new HBM.

Table 2: Workload list

Suite Benchmark (abbreviation)

MARS Page View Count (PVC), Page View Rank (PVR),
Similarity Score (SS)

Parboil
Fast Fourier Transform (fft),
Sum of Absolute Difference (sad),
Sparse Matrix Dense Vector Multiplication (spmv)

Rodinia

Back Propagation (bp), Breath First Search (bfs),
Computational Fluid Dynamics Solver (cfd),
K-means Clustering (kmeans),
Needleman-Wunsch Algorithm (nw),
Speckle Reducing Anisotropic Diffusion version 1
(srad1), srad version 2 (srad2)

4.3 Overhead
To enable the migration of memory requests, we introduce
extra circuits and storage. In this section, the overhead of
our proposed memory system is discussed.
In memory controllers. At the first level of the request queue,
in order to search a migration candidate, our design requires
similar comparison logic with the FR-FCFS scheduler. In
addition, the table keeping track of the bank group status is
required. Second, the 8:8 crossbars are introduced to connect
memory controllers for all channels for one HBM. Last, in
order to differentiate the channel address of a request, 3 bits
are added to each entry of the second level queue. However,
because the queue depth of each level queue is half of the
baseline queue, we, actually, can save the area in spite of the
extra circuits and storage. The detail about the area will be
discussed in Sec. 5.3 with various queue configurations.
In HBM. In order to reroute migrated memory requests, we
use the 8:4 crossbars and extra control signals. The estimated
area increase using CACTI-3DD [11] and 20nm DRAM tech-
nology information [31] is 1.5% of a DRAM die.

5 EVALUATION
5.1 Methodology
For our evaluation, we use GPGPU-Sim version 3.2.2 and
implement our technique in its memory system [3]. The con-
figuration of the evaluated system is summarized in Table. 1.
We model HBM based on [8] and present its key parameters

A Load Balancing Technique for Memory Channels MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA

0.9

1.0

1.1

1.2

1.3

1.4

N
o

rm
al

iz
e

d
 IP

C

32-Entry Queue
64-Entry Queue
Proposed

(a) IPC improvement

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
e

m
o

ry
 In

d
u

ce
d

 S
ta

ll proposed

(b) Normalized memory induced stall cycle

Figure 12: Performance improvement after the migration.

in Table. 1. In order to evaluate our load balancing technique,
we use several GPGPU benchmark suites such as MARS [14],
Rodinia [9], Parboil [33] and mummerGPU (mum) provided
in GPGPU-Sim. The workloads used in the evaluation are
listed in Table. 2. We run all the benchmarks for their full
length to capture whole characteristics of them. For the base-
line, each memory controller has request queues of depth 16.
In our memory system, the first level and second level queues
have 8 entries, respectively. However, the second level queue
can be shared by other channels, if memory requests meet
the migration conditions.

5.2 Performance Analysis
Fig. 12a plots the normalized instruction per cycle (IPC) to
the baseline after applying our load balancing technique. The
32-entry queue and 64-entry queue are the same systems with
the baseline except for the queue depth. As we discussed pre-
vious sections, having large queues is good for performance.
As shown in Fig. 12a, our memory system outperforms the
baseline and large queue systems. The improved IPC over
the baseline is 10.1% on average and up to 26.0%. Because
the request migration effectively increases the request queue
depth, our memory system can hold more memory requests
without incurring stall at the upper level. In bp and srad1,

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
o

rm
al

iz
e

d
 S

e
rv

ic
e

 T
im

e before after

Average

(a) Change of channel skewness in fft

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Sk
e
w
n
e
ss

before after
2.514 1.915

(b) Change of skewness in memory service time

Figure 13: Change of imbalanced memory service time.

their performance is sensitive to the queue depth and the in-
creased queue depth in the proposed memory system mainly
results in their performance improvement. However, in some
applications (e.g., bfs, mum and nw), the queue depth does
not have a significant impact on the performance. In these
applications, our memory system still brings performance im-
provement. This is because, in the proposed memory system,
memory requests can be issued through different channels
from their original channel, which reduces overall queuing
delay by migrating blocked requests from the busy queue.
Fig. 12b shows the normalized stall cycles of memory con-
trollers, in which memory controllers cannot accept memory
requests because there is no empty entry in their request
queue. Our load balancing technique does not specifically
prioritize certain critical requests (e.g., the requests determin-
ing the degree of memory divergence), but it reduces overall
latency of memory requests. Thus, the reduced stall cycles in
memory controllers are mostly reflected in the performance.

In Fig. 13, we present the service time of each channel in fft
and the skewness of the service time. In fft, the skewness of the
number of memory requests was ∼1.06, which means there
is only a 6% inequality in the number of requests between
channels. However, the skewness of the memory service time,
which is defined to be the active time of memory controllers
to serve the memory requests, was ∼1.44 (Fig. 4 in Sec. 3.1)

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA Byoungchan Oh et al.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

5

10

15

20

25

30

C
o

lu
m

n
 /

R
o

w
 A

cc
e

ss
e

s

M
is

se
s

P
e

r
K

il
o

 In
st

ru
ct

io
n

s

MPKI
Row BufferLocality

Figure 14: MPKI and row buffer locality.

and is much bigger than the skewness of the number of
memory requests because of the difference in spatial and
temporal localities between the channels. Because we migrate
the memory requests from the busy channel to a non-busy
channel, this load balancing results in 12% reduction in the
skewness of the service time. As shown in Fig. 13a, the busy
channel becomes less busy and the non-busy channel becomes
busier in our memory system. Fig. 13b shows the improved
load balance in the proposed memory system. Overall, the
skewness is reduced by 7% across all workloads, and there is
a substantial reduction in mum (24%).

As we discussed in Sec. 4.1 (Rule 1), not all memory
requests are migrated to other channels in our memory sys-
tem. In order to obtain benefits from the migration, 1) the
workloads should be memory intensive to generate enough
congestion in the memory system, 2) the memory channels
should be skewed in terms of their request service time and
3) the memory requests should have a certain degree of spa-
tial locality to meet the migration conditions. We present
the memory intensity of the workloads as misses-per-kilo-
instructions (MPKI) and the spatial locality as the ratio of
the number of column commands (RD and WR) to the num-
ber of row commands (ACT) in Fig. 14. A weak correlation
between performance improvement and MPKI is observed,
whereas the row buffer locality of the workloads has a strong
correlation with performance improvement.

In Fig. 15, we present performance improvement with
various queue configurations. Because we effectively increase
the queue depth, 4-8 configuration (4-entry for the first level
queue and 8-entry for the second level queue), whose total
number of queue entries (12) is smaller than the baseline (16),
outperforms the baseline. Also, when the total number of
queue entries is the same, the 4-12 configuration shows slightly
higher IPC than the 8-8 configuration. Because the migration
can happen when memory controllers have more than half
of empty entries at the second level queue, having a larger
second level queue can permit more migrations and yield
higher performance improvement than the smaller second
level queue. The difference in performance between 8-8 and
4-12 configurations is 1-3%.

0.9

1.0

1.1

1.2

1.3

1.4

N
o

rm
al

iz
e

d
 IP

C

1st-2nd Queue: 4-8 Entries

1st-2nd Queue: 8-8 Entries

1st-2nd Queue: 4-12 Entries

Figure 15: Performance according to different queue configu-
rations.

5.3 Area Overhead
In order to estimate the area of the memory controller, we
developed Verilog models synthesized with a 45nm design
library [34]. For this estimation, we only use standard cells.
That is, all memory-components such as CAMs, buffers, and
scheduling tables are modeled using flip-flop, but not cus-
tomized cells, and are therefore conservative. We present the
estimated area in Table. 3 Although we introduce crossbars
and few extra logic, it is the reduced queue depth that mainly
saves the area.

Table 3: Estimated area

Configuration Area (normalized)
4-8 0.90
8-8 0.95
4-12 0.97

6 RELATED WORK
Multi-Channel Memory Controllers. ATLAS is a scheduling
technique proposed for fair scheduling across multiple memory
channels [20]. ATLAS periodically orders threads based on
the service they have attained from the memory controllers.
After a long time quanta, information about the received
service is exchanged between memory controllers and a central
controller prioritizes the threads that have attained the least
service over others in the next epoch. Although ATLAS uses
a long time quanta to provide scalability, this approach is
not practical for GPUs having thousands of threads.

Chatterjee et al. proposed a memory scheduling technique
to manage memory latency divergence in GPUs [7]. In or-
der to avoid inter-warp interference, they proposed form-
ing batches of memory requests from a single warp called
a warp-group. Also, their scheduling technique coordinates
scheduling decisions across multiple memory channels with
dedicated point-to-point interconnections between memory
controllers.

Although these scheduling techniques can improve perfor-
mance by coordinating scheduling decisions across multiple

A Load Balancing Technique for Memory Channels MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA

memory channels with given memory requests in a channel,
there is no consideration about load balancing for memory
channels.
Cost- and Complexity-Effective Memory Controllers. Staged
Memory Scheduler (SMS) is a decentralized architecture for
application-aware memory scheduling [2]. SMS decouples the
memory controller’s primary tasks and partitions them across
simpler hardware structures in a staged fashion. Because of
the decentralized small request queues and simpler schedul-
ing logic, SMS significantly saves the area over FR-FCFS
scheduler while improving performance. However, batch for-
mation in SMS occurs an individual queue per thread. Thus,
this scheduler is not suitable for GPUs having thousands of
threads.

Yuan et al. addressed the high complexity of out-of-order
scheduling such as FR-FCFS and proposed a complexity-
effective solution for achieving the scheduling comparable to
that of out-of-order scheduler [37]. Their key observation is
that the row locality of the memory requests sent from the
shader cores are much higher before they enter the intercon-
nection network compared to when they arrive at memory
controllers. By recovering the destroyed row locality in the
interconnection network, their simple in-order memory con-
trollers performs comparably with an out-of-order scheduler.

Similar to our design, they strove for reducing the imple-
mentation cost of memory controllers. However, both designs
mainly focused on implementing an individual memory con-
troller for a channel without consideration about the coordi-
nation between multiple channels.

7 CONCLUSION
The performance of memory systems often significantly af-
fects overall system performance. HBM is optimized for high
performance by providing a number of memory channels.
Specifically, it is adapted to GPUs to meet their demand for
high memory bandwidth. We observed that only one or a
few memory channels are often highly utilized in GPGPU
applications. This imbalance on memory channels hinders
exploitation of the full bandwidth of an HBM. To overcome
underutilized memory bandwidth, we propose a technique
to improve load balancing for HBM channels. Our technique
enables memory requests to migrate from a busy channel to
other non-busy channels and service it in the other channels.
In addition, the proposed technique effectively increases the
depth of a request queue in a memory controller, which results
in the reduction of the stall cycles by memory controllers.
Our load balancing technique mitigates the imbalance of the
memory channel utilization and brings 10% of performance
improvement for GPGPU applications.

ACKNOWLEDGMENTS
This work is supported in part by Samsung Electronics, NSF
CNS-1705047 and Natural Science Foundation of Tianjin,
18JCQNJC00400.

REFERENCES
[1] AMD. 2015. Inside pascal: NVIDIA's newest computing platform.

https://www.amd.com/en/technologies/hbm. (2015).
[2] Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya Subra-

manian, Gabriel H Loh, and Onur Mutlu. 2012. Staged memory
scheduling: Achieving high performance and scalability in hetero-
geneous systems. In Computer Architecture (ISCA), 2012 39th
Annual International Symposium on. IEEE, 416–427.

[3] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong,
and Tor M Aamodt. 2009. Analyzing CUDA workloads using a
detailed GPU simulator. In Performance Analysis of Systems and
Software, 2009. ISPASS 2009. IEEE International Symposium
on. IEEE, 163–174.

[4] Robert D Blumofe and Charles E Leiserson. 1999. Scheduling
multithreaded computations by work stealing. Journal of the
ACM (JACM) 46, 5 (1999), 720–748.

[5] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. 2012. A
quantitative study of irregular programs on GPUs. In Workload
Characterization (IISWC), 2012 IEEE International Symposium
on. IEEE, 141–151.

[6] Alberto Cano. 2018. A survey on graphic processing unit comput-
ing for large-scale data mining. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 8, 1 (2018).

[7] Niladrish Chatterjee, Mike O’Connor, Gabriel H Loh, Nuwan
Jayasena, and Rajeev Balasubramonian. 2014. Managing DRAM
latency divergence in irregular GPGPU applications. In Pro-
ceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 128–
139.

[8] Niladrish Chatterjee, Mike OâĂŹConnor, Donghyuk Lee, Daniel R
Johnson, Stephen W Keckler, Minsoo Rhu, and William J Dally.
2017. Architecting an energy-efficient dram system for gpus. In
High Performance Computer Architecture (HPCA), 2017 IEEE
International Symposium on. IEEE, 73–84.

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A
benchmark suite for heterogeneous computing. In Workload Char-
acterization, 2009. IISWC 2009. IEEE International Symposium
on. Ieee, 44–54.

[10] John Y Chen. 2009. GPU technology trends and future require-
ments. In Electron Devices Meeting (IEDM), 2009 IEEE Inter-
national. IEEE, 1–6.

[11] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn,
Jay B Brockman, and Norman P Jouppi. 2012. CACTI-3DD:
Architecture-level modeling for 3D die-stacked DRAM main mem-
ory. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2012. IEEE, 33–38.

[12] Preeti Gupta, Arun Sharma, and Rajni Jindal. 2016. Scalable
machine-learning algorithms for big data analytics: a comprehen-
sive review. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery 6, 6 (2016), 194–214.

[13] Mark Harris and David Luebke. 2005. GPGPU: General-purpose
computation on graphics hardware. In International Conference
on Computer Graphics and Interactive Techniques: ACM SIG-
GRAPH 2005 Courses: Los Angeles, California, Vol. 2005.

[14] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K Govindaraju,
and Tuyong Wang. 2008. Mars: a MapReduce framework on
graphics processors. In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques.
ACM, 260–269.

[15] Hiroaki Ikeda and Hidemori Inukai. 1999. High-speed DRAM
architecture development. IEEE Journal of Solid-State Circuits
34, 5 (1999), 685–692.

[16] Intel. 2012. DRAM Controllers for System Designers.
https://www.altera.com/solutions/technology/system-design/
articles/_2012/dram-controller-system-designer.html. (2012).

[17] JEDEC. 2013. High Bandwidth Memory (HBM) DRAM. https:
//www.jedec.org/sites/default/files/docs/JESD235A.pdf. (2013).

[18] JEDEC. 2016. GRAPHICS DOUBLE DATA RATE (GDDR5)
SGRAM STANDARD. https://www.jedec.org/system/files/docs/
JESD212C.pdf. (2016).

[19] Stephen W Keckler, William J Dally, Brucek Khailany, Michael
Garland, and David Glasco. 2011. GPUs and the future of parallel
computing. IEEE Micro 31, 5 (2011), 7–17.

[20] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter.
2010. ATLAS: A scalable and high-performance scheduling al-
gorithm for multiple memory controllers. In High Performance

https://www.amd.com/en/technologies/hbm
https://www.altera.com/solutions/technology/system-design/articles/_2012/dram-controller-system-designer.html
https://www.altera.com/solutions/technology/system-design/articles/_2012/dram-controller-system-designer.html
https://www.jedec.org/sites/default/files/docs/JESD235A.pdf
https://www.jedec.org/sites/default/files/docs/JESD235A.pdf
https://www.jedec.org/system/files/docs/JESD212C.pdf
https://www.jedec.org/system/files/docs/JESD212C.pdf

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA Byoungchan Oh et al.

Computer Architecture (HPCA), 2010 IEEE 16th International
Symposium on. IEEE, 1–12.

[21] David Kirk et al. 2007. NVIDIA CUDA software and GPU parallel
computing architecture. In ISMM, Vol. 7. 103–104.

[22] John DC Little and Stephen C Graves. 2008. Little’s law. In
Building intuition. Springer, 81–100.

[23] Igor Loi and Luca Benini. 2010. An efficient distributed memory
interface for many-core platform with 3D stacked DRAM. In
Proceedings of the Conference on Design, Automation and Test
in Europe. European Design and Automation Association, 99–
104.

[24] MICRON. 2014. DDR4 SDRAM. https://www.micron.com/~/
media/documents/products/data-sheet/dram/ddr4/4gb_ddr4_
dram_2e0d.pdf. (2014).

[25] Michael Mitzenmacher. 2001. The power of two choices in ran-
domized load balancing. IEEE Transactions on Parallel and
Distributed Systems 12, 10 (2001), 1094–1104.

[26] NVIDA. 2016. Inside pascal: NVIDIA's newest computing plat-
form. https://devblogs.nvidia.com/inside-pascal. (2016).

[27] John D Owens, David Luebke, Naga Govindaraju, Mark Harris,
Jens Krüger, Aaron E Lefohn, and Timothy J Purcell. 2007. A
survey of general-purpose computation on graphics hardware. In
Computer graphics forum, Vol. 26. Wiley Online Library, 80–113.

[28] Subbarao Palacharla, Norman P Jouppi, and James E Smith. 1997.
Complexity-effective superscalar processors. Vol. 25. ACM.

[29] Scott Rixner, William J Dally, Ujval J Kapasi, Peter Mattson,
and John D Owens. 2000. Memory access scheduling. In ACM
SIGARCH Computer Architecture News, Vol. 28. ACM, 128–138.

[30] Hemant G Rotithor, Randy B Osborne, and Nagi Aboulenein.
2006. Method and apparatus for out of order memory scheduling.

(Oct. 24 2006). US Patent 7,127,574.
[31] Samsung Semiconductor. 2016. Research collaboration communi-

cations. (2016).
[32] Dilpreet Singh and Chandan K Reddy. 2015. A survey on plat-

forms for big data analytics. Journal of Big Data 2, 1 (2015),
8.

[33] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid,
Li-Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W
Hwu. 2012. Parboil: A revised benchmark suite for scientific
and commercial throughput computing. Center for Reliable and
High-Performance Computing 127 (2012).

[34] Oklahoma State University. 2017. FreePDK: Unleashing VLSI to
the Masses. https://vlsiarch.ecen.okstate.edu/flows/. (2017).

[35] Gert-Jan van den Braak, Juan Gomez-Luna, José María González-
Linares, Henk Corporaal, and Nicolas Guil. 2016. Configurable
XOR hash functions for banked scratchpad memories in GPUs.
IEEE Trans. Comput. 65, 7 (2016), 2045–2058.

[36] Hans Vandierendonck and Koenraad De Bosschere. 2005. XOR-
based hash functions. IEEE Trans. Comput. 54, 7 (2005), 800–
812.

[37] George L Yuan, Ali Bakhoda, and Tor M Aamodt. 2009. Complex-
ity effective memory access scheduling for many-core accelerator
architectures. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 34–44.

[38] William K Zuravleff and Timothy Robinson. 1997. Controller for
a synchronous DRAM that maximizes throughput by allowing
memory requests and commands to be issued out of order. (May 13
1997). US Patent 5,630,096.

https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
https://devblogs.nvidia.com/inside-pascal
https://vlsiarch.ecen.okstate.edu/flows/

	Abstract
	1 Introduction
	2 Background
	2.1 Increasing Demand of Memory Capacity and Bandwidth
	2.2 High Bandwidth Memory

	3 Challenges in Many Channel Memory Systems
	3.1 Imbalanced Channel Utilization
	3.2 Implementation Challenges of Memory Controllers

	4 Overview of the Proposed Design
	4.1 Re-architecting Memory Controllers
	4.2 Re-architecting HBM
	4.3 Overhead

	5 Evaluation
	5.1 Methodology
	5.2 Performance Analysis
	5.3 Area Overhead

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

