
How Much Computation Power do you need for
Near-Data Processing in Cloud?

Namhyung Kim†‡, Jeongseob Ahn‡, Sungpack Hong‡, Hassan Chafi‡, and Kiyoung Choi†
†Seoul National University ‡Oracle Labs

nhkim@dal.snu.ac.kr {jeongseob.ahn, sungpack.hong, hassan.chafi}@oracle.com kchoi@snu.ac.kr

Abstract—In modern cloud server systems, the big data ap-
plication domain is one of the most important ones these days.
However, as a large amount of data has to be transferred between
storage unit and computing unit, the conventional server systems
failed to fully utilize their resources. Near-data processing has
been proposed to mitigate this inefficiency. Due to the reduced
data transfer and its scalability, utilizing near-data processing can
perform better than servers with high-end computing units. It can
reduce data transfer by offloading computation to the embedded
CPU in the storage device. In this work, based on the evaluation
and analysis, we demonstrate advantages and disadvantages of
existing server systems with near-data processing and show the
potential of them with an alternative design. We also demonstrate
that embedded CPUs are not enough to run applications such
as big data applications. Instead, our evaluations show that
computing units with better energy efficiency such as embedded
GPU or ASIC can be a promising alternative that better exploits
the advantage of near-data processing.

I. INTRODUCTION

Big Data [1], data analysis, and Cloud are three outstand-
ing trends in IT industry that reinforce one another. The
proliferation of Big Data or massive data repositories has
played a crucial role in recent improvements in data analysis
methodologies, including deep learning and graph analysis.
The success stories of data-driven applications motivate people
to accumulate even larger data sets so that they can extract
even more valuable information. On the other hand, a modern
Cloud environment often offers sufficient amount of storage
capacity and computation power for Big Data-driven appli-
cations within affordable price range. The growing number
of those applications, in turn, solicits even more storage and
computation, which Cloud business can thrive upon.

While a typical data-driven application requires both large
amount of data and significant amount of computation, the
portion of the two differs from one application to another.
Cloud, on the other hand, works at scale and aims to address
various characteristics of user applications in elastic manners.
Therefore, Cloud providers tend to deploy different classes
of servers for different purposes in their data center, e.g.,
storage servers and compute servers. Storage servers are built
with a large number of disk bays, but with relatively wimpy
CPUs, in order to maximize data density per rack. Compute
servers, to the contrary, are built with beefy CPUs (or GPUs),
larger DRAMs, and high-bandwidth SSDs to provide high
computation throughput. Consequently, a Cloud provider can
keep deploying different number of compute servers and

storage servers, based on the aggregated requirements of all
the customers.

However, this elastic design of Cloud infrastructure creates
another challenge for data-driven applications – the large
amount of data has to move from storage server into compute
server before it can be possessed. Near-Data Processing (NDP)
is one answer to this challenge. The idea is to move compu-
tation near the place where the data resides and to perform
computation there, instead of moving data around. In fact,
there are many proposals/systems that applies NDP principle
in different layers. For instance, modern enterprise database
systems (e.g., Oracle Exadata) pushes down certain operations
(e.g., scan) to storage layer to reduce the amount of data
movement in query processing. Intelligent storage devices [2]–
[5] go one step further, as they push down computation into
the storage device (i.e., SSD), exploiting embedded computing
units in the device controller. The effectiveness of NDP
proposals, however, depend not only on available computation
and data access bandwidth of the proposed architectures but
also on the characteristics of applications.

In this study, we explore the potential benefits of NDP for
executing data applications in Cloud environments. Specifi-
cally, we make the following contributions in this paper.

• We explain pros and cons of NDP proposals with a simple
roofline model, as well as characterize and validate a few
representative data-driven applications for the model.

• Our model shows that the intelligent storage approach
has great potentials for streaming applications, as it can
exploit all the bandwidth of the disks as the data size
scales up.

• We also observe that current intelligent storage proposals,
however, do not reach their full potential due to the
inferior compute-per-power of embedded CPU. Rather,
we propose that using more power-efficient units such
as embedded GPU or ASIC would make this approach
viable even for fairly compute intensive applications.

II. BACKGROUND AND MOTIVATION

A. Near-Data Processing

The concept of the near-data processing was first proposed
a few decades ago [6], [7]. In recent few years, it is gaining
attention again through emerging memory architectures (e.g.,
3D stacked memory, Hybrid Memory Cube, and SSD). Since
NDP moves computation to inside the memory or storage layer

GPU GPU

N
et

w
o

rk

GPU GPU

CPU

…

S
to

ra
g

e

S
to

ra
g

e

S
to

ra
g

eCPU

S
to

ra
g

e

Storage ServerCompute Server

(a) Conventional server system with GPUs

S
to

ra
g

e

.

…

S
to

ra
g

e

.

S
to

ra
g

e

.

S
to

ra
g

e

.

S
to

ra
g

e

.

Computing Unit
Storage Server

(b) Near-data processing

Fig. 1. System configurations.

where the data is stored, it can significantly save the cost of
data movement. Instead of transferring the whole data, it only
transfers subset or pre-processed data. In this study, we focus
on NDP systems enabled in the storage layer. For instance,
in SSDs, general purpose embedded CPUs are adopted as a
controller to run firmware (e.g., flash translation layer) in many
cases. Therefore, we can exploit the computing units for NDP.

With NDP, since most of the data stays inside the storage
and does not move outside of it, NDP can utilize the internal
bandwidth of the storage which is higher than the external
bandwidth. For example, the internal bandwidth of recent
high speed SSD is 30% higher than the external bandwidth
(e.g., PCIe 3.0 x4) [4]. Furthermore, the internal bandwidth
of SSD will be improved rapidly over time with its internal
parallelism [3], [5].

There are a bunch of previous work of NDP with SSDs.
Tiwari et al. [2] and Cho et al. [3] use analytic model to
estimate benefits of NDP running some data-intensive appli-
cations and estimate its performance and energy consumption.
Do et al. [5] and Gu et al. [4] evaluate NDP with real NDP-
enabled SSD and show significant performance improvement
and energy saving through the use of NDP.

B. State-of-the-art Server System in Cloud

Fig. 1a shows the state-of-the-art GPU-enabled system in
cloud servers [8]. It is configured with host servers, compute
servers, and storage servers. A compute server consists of
a bunch of high-end GPU devices [9] and utilizes them as
an accelerator by exploiting their high parallelism. A storage
server has tens of storage devices and provides a large capacity
of storage with high density to clouds [10]. It also has few
CPUs for computing capability. These components in the
system are connected to each other through the network such
as Infiniband or Ethernet.

To accelerate an application with GPUs, the data accessed
by applications needs to be copied to a GPU server ahead of
the kernel execution. Therefore, the data-intensive workloads
like data mining applications may suffer from frequent and
large data transfer. Particularly, some streaming applications
without data reuse need to load every data they access from
the storage. To reduce the amount of data movement between
storage server and compute server, the CPUs in the storage
server can be utilized.

AlexNet GoogLeNetkmeansknn lud
0

0.5

1

N
or

m
al

iz
ed

E
xe

cu
tio

n
Ti

m
e

I/O Memory Copy Kernel

AlexNet GoogLeNetkmeansknn lud
0

0.5

1

Fig. 2. Relative execution time breakdown. High-end GPU (left) and
embedded CPU (right).

As an alternative way, we can build NDP-enabled servers
shown in Fig. 1b. Each storage device in the server is
configured with a computing unit and memory (e.g., flash
memory) and the NDP-enabled server can be connected to
other compute or host servers like Fig. 1a. Such NDP servers
can be beneficial to reduce the amount of data movement
by processing the data stored in the same storage device.
In addition, since the computation resource resides in every
storage device, the total computing power and the internal
bandwidth of NDP can be scaled as the number of attached
storage devices increases. If applications offloaded to the
storage are distributed and processed only with local data,
the performance can be improved linearly to the number of
storage devices.

C. Limitation of Existing Systems

There are two main concerns in designing scalable server
architecture. First, the amount of data processed by emerging
applications is growing faster. It turns out that the amount of
data needed to be loaded from the storage is also increasing.
Second, the computing capability of the server system is also
growing faster with accelerators like GPUs, but still there is
a lack of the network bandwidth between the storage and the
compute server. Although we can take advantage of the prior
NDP systems [4] to reduce the data movement by moving
computation inside the storage devices, the effectiveness de-
pends on available computation bandwidth.

We run experiments to figure out how much computation is
required on a couple of applications. Fig. 2 shows execution

time breakdown of selected applications with two different
computing units, the high-end GPU and embedded CPU. To
precisely compare the computation bandwidth between them,
we assume that each computing unit is attached to the same
type of storage and network. In the high-end GPU setting, we
can see that a large portion of time (79.7%) is spent on the
data transfer since the data transfer rate does not meet the
the data processing rate. It turns out that the high-end GPU
becomes idle frequently. On the other hand, with an embedded
CPU, 87.1% of the time is spent on computation because of
the relatively low performance of embedded CPU. In such a
case, the computation capability is a dominant factor deciding
the performance.

As can be seen here, previous two state-of-the-art systems
are not balanced between computing power and bandwidth.
The high-performance GPU server system is bounded by I/O
bandwidth and the system with NDP is bounded by its low
computing power. Therefore, both of server systems are very
inefficient and this imbalance must be addressed.

III. EVALUATION: NEAR-DATA PROCESSING FOR CLOUD
ENVIRONMENT

In this section, we take the approach of limiting factor analy-
sis in discussing the effectiveness of Near-Data Processing for
a Cloud environment. We assume that a data-driven application
is applied to infinitely large amount of data that is stored in
numerous storage devices across the Cloud. Then we analyze
the maximally achievable application throughput for different
system configurations under the same electric power budget
for computation.

A. Roofline Model

For the sake of discussion, we adopt the roofline model [11],
as it illustrates the impact of the limiting factor between com-
putation and communication very well. Fig. 3 is an example
of a typical roofline plot. The x-axis represents computation
intensity of the target application as computation per byte
(i.e. FLOPs/Byte). That is, an application is characterized as
a single value (computation per byte), assuming linear scaling
of computation with data. On the other hand, the y-axis is the
achieved performance (or throughput) of the application, as
FLOPs per second. Therefore, for example, if two different
implementations of the same application are put in the plot,
a faster implementation would be placed on top of the other,
since they share the same innate computation intensity of the
application, as shown in the figure.

More importantly, the roofline model clearly indicates the
maximally achievable performance of any application, from
two key characteristics of the execution environment: com-
munication bandwidth and computation throughput. In the
plot, this performance limit is rendered into two segments of
line – slanted region and flat region. The slanted region is
for the application that has low computation intensity, since
their maximum performance is bounded by the communication
bandwidth of the execution environment. In the plot, the slope
of the slanted region indicates the communication bandwidth.

App1-Impl1
App1-Impl2

App2-Impl1

App2-Impl2

Limited by
Communication

Bandwidth

Limited by
Computation
Throughput

Workload Characteristics (FLOPs/Byte)

A
ch

ie
ve

d
Pe

rf
or

m
an

ce
(F

L
O

Ps
/s

ec
)

Fig. 3. Typical Roofline model.

In contrast, the flat region is for the computation-intensive
applications where their maximum performance is limited by
computation throughput of the execution environment. This
limit is indicated as flat line in the region.

B. Workload Characteristics

For our discussion, we choose seven data-driven applica-
tions and get their computation and communication charac-
teristics. We use two from traditional data mining applica-
tions (knn, kmeans), one from computational analysis (i.e.,
linear algebra) applications (lud), and two from convolu-
tional neural network (CNN) applications (Alexnet [12] and
GoogLeNet [13]). Knn, kmeans, and lud are from Rodinia
benchmark suite [14] and Alexnet and GoogLeNet are from
Caffe [15]. For each CNN application, we took its training and
inference as two separate applications since they have different
characteristics.

The descriptions of selected workloads are summarized in
Table I. Note that the first five applications have streaming or
embarrassingly parallel communication pattern. On the other
hand, the CNN training applications require both streaming of
image data and synchronization of updating weight values.
Here we assume simple synchronized approach for paral-
lel/distributed learning, where each learner communicates with
a central weight server at every batch.

In addition, we measured the computation per byte using
the GPU implementations of these applications. That is, we
profiled GPU execution to obtain the number of floating point
operations of main kernels in these applications and divided
the number by the size of necessary data movement. In the
table, CNN inference has higher computation intensity than
CNN training, because we assumed that the whole weight
values are synchronously updated at every batch; the size of
weight is larger than input data.

C. System Configurations

We now explain the different system configurations for
our comparisons. As a reminder, we take the approach of
limiting factor analysis. That is, we assume that a data-driven
application is applied to infinitely large amount of data that
is stored in numerous storage devices across the Cloud. We
analyze the maximally achievable application throughput for

TABLE I
SUMMARY OF WORKLOADS

Workload Description
Compute Intensity

(FLOPs/Byte) Data Access Pattern Source

knn k-nearest neighbor 0.102 Streaming object data Rodinia
kmeans Kmeans 3.840 Streaming object data Rodinia
lud LU Decomposition 782.1 Streaming matrix data Rodinia
AlexNet (inference) CNN inference 13333 Streaming image Caffe
GoogLeNet (inference) CNN inference 16667 Streaming image Caffe

AlexNet (training) CNN training 395.7 Streaming image / synchronize weight Caffe
GoogLeNet (training) CNN training 8120 Streaming image / synchronize weight Caffe

different system configurations that have similar electric power
budget for computation.

For this purpose, we first chose computation components
for different grades: high-end GPU, high-end CPU, embedded
CPU and embedded GPU. Our choices and their characteristics
are summarized in Table II, where we tried to choose fairly
representative ones, for instance by considering popularity.
Computation throughput and TDP are from the specification
documents of the computation component.

Now, we introduce four system configurations that we
consider for Cloud computation. The first is to use a powerful
compute-server, as depicted in Fig. 1a. Specifically, we assume
that the compute-server is equipped with four high-end GPUs.
In this configuration, however, the compute sever needs to
stream in the data from storage servers (or devices) before it
can proceed with the computation. Therefore, the bottleneck
communication bandwidth (for streaming applications) would
be the bandwidth of the network connected to this server; we
assume that an Infiniband network is available with 3.2GB/s
bandwidth. This configuration, referred as Compute-Server-
GPU, is the baseline for our comparison.

The second configuration (Storage-Server-CPU) is for more
traditional push-down approach where the computation is done
by the CPUs in the storage server (Fig. 1a). Here, we assume

TABLE II
SPECIFICATIONS OF COMPUTATION COMPONENTS.

Class Compute TDP
(GFLOPs/sec) (watt)

4x Cortex A57 Embedded CPU 55 8
Tegra X1 Embedded GPU 500 15
Xeon 2699v4 Mid-end CPU 1970 145
Titan X High-end GPU 7000 250

TABLE III
SYSTEM SPECIFICATION

Configuration Computation Num. Stream BW
Name Component Units (per-unit)

Compute-Server-GPU High-end GPU (x4) x1 3.2 GB/s
Storage-Server-CPU High-end CPU (x2) x4 12.0 GB/s
NDP-eCPU Embedded CPU (x1) x128 4.55 GB/s
NDP-eGPU Embedded GPU (x1) x64 4.55 GB/s

that a storage server has two high-end CPUs and connected
to a lot of (e.g., 32) storage devices through eight channels
of SAS disk interface. Therefore, for streaming application,
each storage server can get the aggregated bandwidth of these
channels which we count as 12.0 GB/s. We compare the
electric power of computing component and presume that four
storage servers are equivalent to a single compute server with
high-end GPUs.

The third and fourth configurations (NDP-eCPU and NDP-
eGPU) represent the cases of NDP. As depicted in Fig. 1b,
these configurations assume that each storage device (e.g,
SSD) is equipped with a computing component so that it can
directly execute the given application on the data partition
stored in the device. As for the streaming bandwidth, we
assume that these devices can exploit the internal bandwidth
which is somewhat higher than external bandwidth, amounting
to 1.3x of PCIe, as discussed in a previous study [4]. Finally,
from TDP of computing components, we presume that a single
compute server is equivalent to 128 storage devices with
embedded CPU and 64 storage devices with embedded GPU.

D. Analysis: Streaming Applications
Now we compare different configurations using the roofline

model for streaming applications.
The roofline models of all configurations are shown in

Fig. 4a where each configuration draws a different line from its
own available computation and bandwidth. Since these plots
are for streaming applications, the available communication
bandwidth in each configuration is simply (# units in con-
figuration) x (available bandwidth per unit) in Table III,
which dominates the slanted regions of the plot.

Similarly, for flat regions of the plot, the available com-
putation throughput is again determined by (# units in
configuration) x (# computing components per unit) x
(computation throughput per component), because we are
assuming streaming applications.

Fig. 4b and Fig. 4c are a zoom-ins of slanted region
and flat region respectively of Fig. 4a with indications of
corresponding application workloads in Table I. For instance,
knn application whose computation intensity is about 10−1 is
shown in Fig. 4b, while AlexNet inference is shown in Fig. 4c
with intensity of about 104.

10−2 10−1 100 101 102 103 104 105

10−5

10−3

10−1

101

103

Compute Intensity (FLOPs/Byte)

T
FL

O
Ps

/s
ec

(a) Roofline models

10−1 100 101
10−4

10−3

10−2

10−1

100

101

102

3.2 GB/s

48 GB/s
291.2 GB/s

582.4 GB/s
2912 GB/s

Compute Intensity (FLOPs/Byte)

T
FL

O
Ps

/s
ec

(b) Slanted region

103 104 105

100

101

102

103

28 TFLOPS
15.76 TFLOPS

32 TFLOPS

7.04 TFLOPS

320 TFLOPS

Compute Intensity (FLOPs/Byte)

T
FL

O
Ps

/s
ec

(c) Flat region

101 102 103 104 105 106 107

10−4

10−2

100

102

3.2 GB/s

291.2 GB/s

0.135 GB/s

Compute Intensity (FLOPs/Byte)

T
FL

O
Ps

/s
ec

(d) With communication

Compute-Server-GPU Storage-Server-CPU NDP-eGPU NDP-eCPU NDP-ASIC
NDP-eGPU-COMM knn kmeans lud AlexNet (inference)

GoogLeNet (inference) AlexNet (training) GoogLeNet (training)

Fig. 4. Roofline models.

The following observations can be made naturally from
these plots. (a) For applications with low-computation inten-
sity, spreading out the data into as many devices as possible
is always the best. Consequently, among four original config-
urations, NDP-eCPU performs the best, since the lowest TDP
of embedded CPU allowed the largest number of units. (b)
However, embedded CPU also has the worst performance-
per-power. Therefore the configuration hits the flat region
earlier than other configurations and the throughput saturates
faster as the computation intensity grows (e.g., lud). (c)
To the contrary, Compute-Server-GPU configuration performs
least, because the performance is bottlenecked by the network
communication bandwidth until the computation intensity of

target applications grow significantly. (d) Finally, NDP-eGPU
configuration is very interesting. This configuration performs
well not only for low computation applications (due to its
low TDP), but also for high computation workloads (due it its
high performance-per-power). Consequently, this configuration
works better than Compute-Server-GPU configuration even for
CNN inference applications.

Finally, we added the plot for an extra configuration in
above plots, namely NDP-ASIC. This configuration represents
the case of using an ASIC for the given (family of) applica-
tion, which could bring the same amount of computation as
embedded GPU but with 10x lower power. For example, neural
network accelerators (e.g., PuDianNao [16], Eyeriss [17], and

TPU [18]) are proposing similar performance and energy effi-
ciency over GPUs. Therefore in this configuration, according
to our model, the computation can be spread out to 10x larger
number of devices, which yields 10x more bandwidth than
NDP-eGPU for slanted region. Also, since each of the ASIC
component gives the same amount of computation as one
embedded GPU, the aggregated computation throughput is
again 10x than NDP-eGPU.

E. Analysis: Non-Streaming Applications

The analysis in the previous section is, however, for stream-
ing applications where each unit can perform its own compu-
tation without communicating with others a lot. However, not
all data-driven applications are simple streaming ones. In this
section, we analyze the case of CNN training applications, as
examples of non-streaming applications.

As discussed in previous subsections, the CNN training
applications not only stream the image data, but also need to
synchronize weight value updates. In this analysis, we assume
simple methodology of distributed learning where each learner
communicate with weight server at the end of each batch
processing.

Under this communication pattern, we now need to adjust
the roofline model of our execution configurations. The flat
regions are intact since the aggregated computation bandwidth,
determined by computation throughput per each device, stays
the same. However, for slanted region, the effective bandwidth
has to be re-adjusted, as we can no longer say the internal
storage bandwidth is the bottleneck. Rather, the new bottleneck
becomes communication with the weight server. Because each
unit must communicate with the server, we presume that
the effective bandwidth is (Network Bandwidth of Weight
Server) / (# Units in Configuration). We use Infiniband
bandwidth for the network bandwidth.

Fig. 4d depicts the new roofline plots for this communica-
tion assumption. Although, NDP-eGPU-COMM configuration
still has high value for the aggregated computation throughput,
the effective bandwidth is too low; it requires very high
computation density for NDP-eGPU-COMM to become faster
than Compute-Server-GPU again.

IV. CONCLUSION

In this paper, we analyzed and evaluated alternative designs
of near-data processing with higher computation power than
embedded CPUs. Based on our observation, none of the
existing server systems can run data mining applications effi-
ciently. Through higher internal bandwidth of storage devices
and computation bandwidth, NDP with embedded GPU can
outperform than conventional server systems with high-end
GPUs. We also provided insights about which NDP design
is the best for each application. Among the systems we
compared, NDP with high computation units was the best in
general in terms of both performance and energy efficiency.
However, the benefit of NDP was limited to the applica-
tions that can be distributed without communication between
NDP devices. For the applications with communications, NDP

systems were not beneficial at all because it cannot take
advantages of improved bandwidth anymore.

REFERENCES

[1] P. Vagata and K. Wilfong. (2014) Scaling the Facebook data warehouse
to 300 PB. https://code.facebook.com/posts/229861827208629/scaling-
the-facebook-data-warehouse-to-300-pb/

[2] D. Tiwari, S. Boboila, S. Vazhkudai, Y. Kim, X. Ma, P. Desnoyers, and
Y. Solihin, “Active Flash: Towards energy-efficient, in-situ data analytics
on extreme-scale machines,” in Proceedings of the Conference on File
and Storage Technologies, 2013.

[3] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. Ganger, “Active disk meets
flash: a case for intelligent SSDs.” in Proceedings of the International
Conference on Supercomputing, 2013.

[4] B. Gu, A. S. Yoon, D. H. Bae, I. Jo, J. Lee, J. Yoon, J. U. Kang,
M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang, “Biscuit: A frame-
work for near-data processing of big data workloads,” in Proceedings
of the International Symposium on Computer Architecture, 2016.

[5] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt,
“Query processing on smart SSDs: Opportunities and challenges,” in
Proceedings of the International Conference on Management of Data,
2013.

[6] E. Riedel, G. A. Gibson, and C. Faloutsos, “Active storage for large-
scale data mining and multimedia,” in Proceedings of the International
Conference on Very Large Data Bases, 1998.

[7] K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A case for intelligent
disks (IDISKs),” ACM SIGMOD Record, vol. 27, pp. 42–52, Sep. 1998.

[8] A. G. Murillo. (2017) The end-to-end refresh of our server
hardware fleet. https://code.facebook.com/posts/1241554625959357/the-
end-to-end-refresh-of-our-server-hardware-fleet/

[9] K. Lee. (2017) Introducing Big Basin: Our next-generation AI hard-
ware. https://code.facebook.com/posts/1835166200089399/introducing-
big-basin-our-next-generation-ai-hardware/

[10] J. Adrian. (2017) Introducing Bryce Canyon: Our next-generation
storage platform. https://code.facebook.com/posts/1869788206569924/
introducing-bryce-canyon-our-next-generation-storage-platform/

[11] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, pp. 65–76, Apr. 2009.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Proceedings of the
Advances in Neural Information Processing Systems, 2012.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” arXiv:1409.4842, 2014.

[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Proceedings of the International Symposium on Workload Character-
ization, 2009.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv:1408.5093, 2014.

[16] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, “PuDianNao: A polyvalent machine learning accelerator,”
in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, 2015.

[17] Y. H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” in
Proceedings of the International Symposium on Computer Architecture,
2016.

[18] N. P. Jouppi et al., “In-datacenter performance analysis of a Tensor
Processing UnitTM,” in Proceedings of the International Symposium on
Computer Architecture, 2017.

