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Abstract. In this paper, we evaluate the overheads of virtualization in
commercial multicore architectures with shared memory and MPI-based
applications. We find that the non-uniformity of memory latencies affects
the performance of virtualized systems significantly. Due to the lack of
support for non-uniform memory access (NUMA) in the Xen hypervisor,
shared memory applications suffer from a significant performance degra-
dation by virtualization. MPI-based applications show more resilience
on sub-optimal NUMA memory allocation and virtual machine (VM)
scheduling. However, using multiple VMs on a physical system for the
same instance of MPI applications may adversely affect the overall per-
formance, by increasing I/O operations through the domain 0 VM. As
the number of cores increases on a chip, the cache hierarchy and external
memory will become more asymmetric. As such non-uniformity in mem-
ory systems increases, NUMA and cache awareness in VM scheduling
will be critical for shared memory applications.

1 Introduction

Virtualization has become popular to improve system utilization by consolidat-
ing multiple servers into a physical system. In addition to the improved utiliza-
tion, other benefits of virtualization, such as flexible resource management, fault
isolation, and support for different operating systems, have led to the increase
of interest in the virtualization of computing clusters for high performance com-
puting (HPC). Furthermore, public cloud computing services, such as Amazon
EC2 [1], accelerated the adoption of virtualization for HPC applications.

However, the characteristics of compute-intensive HPC applications are quite
different from those of I/O-intensive server applications, which have been the
main target of prior performance optimizations for virtualization. To adopt vir-
tualization for HPC applications, thorough analysis of their performance char-
acteristics in virtualized systems is necessary. Furthermore, the fast increase of
core counts in multicore architectures, combined with virtualization techniques,
affects the performance of HPC applications significantly.

In multicore architectures, memory hierarchies are getting complicated, and
their effects have become significant for HPC applications. One of the most
important factors in multicore memory hierarchies is non-uniform memory access



(NUMA). Virtualization complicates the scheduler optimizations for NUMA, as
it hides the underlying non-uniformity in memory access. In virtualized systems,
a guest operating system may not be aware of the non-uniformity in memory
access, and thus it may not be able to make optimal scheduling decisions.

In this paper, we investigate the overheads of virtualization on HPC appli-
cations running on multicore systems with uniform and non-uniform memory
access latencies. Using the Xen hypervisor, we evaluate both a shared-memory
multi-threaded benchmark, PARSEC [4], and a MPI-based benchmark, NAS
Parallel Benchmark (NPB) [3] in various configurations. The experimental re-
sults show that for shared memory applications, the performance overheads by
virtualization are minor, if all the cores have a uniform memory latency. How-
ever, if the memory hierarchy is not symmetric, especially with non-uniform
memory access times, the current Xen hypervisor [6] adds a significant overhead
to the applications by sub-optimal scheduling and memory allocation.

For MPI-based applications, the impact of non-uniform memory latencies is
not as severe as the shared-memory applications, since the performance bot-
tleneck moves to the I/O performance. Virtualization adds a small overhead
for MPI applications. However, the granularity of VMs, the number of virtual
CPUs (vCPUs) per VM, seems to be important for MPI applications. Using
multiple VMs on a physical system for the same instance of MPI applications
may degrade the performance significantly for a subset of NPB applications.

2 Methodology

2.1 Target Multicore Architectures

We use two different types of commercial multicore systems to evaluate HPC
applications with virtualization. The first system is a single-socket system with
a 12-core AMD Opteron 6168 processor (single-socket). The processor is a
multi-chip module with two dies packaged together. Each die has six cores. Each
core has separate 64KB instruction and data caches, and 512KB L2 cache. Six
cores in a die share a 6MB L3 cache. The twelve cores in the system have almost
uniform memory latencies to any memory modules.

The second system (dual-socket) uses two Intel Nehalem E5530 processors,
which have four cores in each processor. Each core has separate 32KB instruction
and data caches, and a 256KB private L2 cache. Four cores in a processor share
an 8MB L3 cache. In the dual-socket system, two quad-core processors are con-
nected by QPI interconnections. With the QPI interconnections, each processor
has its own DRAM memory banks. An important characteristic of the system is
non-uniform memory access (NUMA). In such NUMA systems, the latencies of
accessing remote memory connected to the other socket are much higher than
the latency of accessing local memory.

2.2 Methodology

To evaluate the effects of virtualization, we use the Xen hypervisor (version
3.4.2) [6]. We compare the performance of two selected benchmarks on virtual-



ized configurations to that on non-virtualized (native) configurations. The guest
operating system in the virtualized configurations is a Linux (kernel version
2.6.31.13) modified to support the para-virtualization mode of the Xen hypervi-
sor. For the operating system in the native configurations, the same version of
the Linux kernel is used.

We use two benchmarks representing different uses of HPC clusters: PAR-
SEC [4] is a shared-memory multi-threaded benchmark. This benchmark is eval-
uated with a single physical machine. We use the largest input set for PARSEC
(native input set). As a MPI-based benchmark, we evaluate the NAS parallel
benchmark (NPB) [3]. To evaluate the overheads of MPI communications, we
connected two systems by a 1gigabit Ethernet switch, and used the MPICH 1.2
library [2]. For NPB, we use the class C input set.

2.3 Virtual Machine Scheduling

In the Xen hypervisor, the unit of scheduling is a virtual CPU (vCPU). Each
VM may have multiple vCPUs, emulating a multiprocessor system. The Xen
hypervisor uses a credit-based scheduler, which assigns credits for each vCPU
periodically to guarantee fairness among vCPUs. Since vCPUs are scheduled
independently, there is no guarantee that the vCPUs from a single VM are
scheduled together. The Xen hypervisor maintains queues for each physical core,
but vCPUs may migrate to all the physical cores freely unless they are pinned
to specific cores. In the default setting, the scheduler will try to maximize the
overall throughput by not wasting any CPU cycles, ignoring the cost of migrating
vCPUs to different cores. Whenever a core becomes idle, it will attempt to steal
active vCPUs waiting in the queues of other cores.

In the target dual-socket system, relocating a thread across the processor
boundary may cause two effects: shared L3 cache and NUMA effects. When
a thread migrates from a processor to the other processor, it can no longer
access the cached data in the L3 cache in the old processor directly. In the new
processor, necessary data must be fetched either from the old L3 cache or the
memory. The other effect is non-uniform memory access latencies. Depending on
which memory modules a thread mostly accesses, the processor where the thread
is running may have a significant effect on the overall performance due to non-
uniform memory access latencies. In the target single-socket system, relocating
a thread from a die to the other die causes only the effect of shared L3 cache, as
the system has uniform memory latencies from all the cores.

3 Shared Memory Applications: PARSEC

3.1 Performance

Single Socket Results: To isolate the effect of NUMA, we first evaluate the
effect of virtualization by using a system with one processor (single-socket). In
the single-socket system, the memory access latencies from 12 cores are uniform
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Fig. 1. Single socket (unpinned vCPUs): execution times with 1, 4, and 8 vCPUs
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Fig. 2. Single socket (pinned vCPUs): execution times with 1, 4, and 8 vCPUs

regardless of memory banks. Among 12 cores, we use only 8 cores to be consistent
with dual-socket results. Figure 1 presents the execution times of the PARSEC
benchmark normalized to those of the native system with the same number
threads. In this experiment, the vCPUs are not pinned to physical cores, and
thus the Xen scheduler can migrate vCPUs without any restriction to minimize
unused CPU cycles. For each application, three bars are shown: one, four, and
eight vCPUs. The number of threads in each application is set to the number of
vCPUs.

In general, for the single-socket system, the performance overheads by vir-
tualization are insignificant, regardless of the number of vCPUs. For one and
four vCPUs, the execution times increase by 2% on average compared to the
native system, and for eight vCPUs, the average execution time increases by
4%. The Xen hypervisor supports efficient virtualization for compute-intensive
shared-memory applications for the single-socket system with uniform memory
access. To further investigate the effect of scheduling, we fix vCPUs to physical
cores. Figure 2 presents the execution times normalized to those of the native
system, when vCPUs are pinned to physical cores. The results are similar to
those with the unpinned configuration. With uniform memory access latencies,
mapping between vCPUs and physical cores does not have a significant im-
pact on the performance of the PARSEC applications. Furthermore, the cost
of vCPU migration across shared L3 caches is minor, as shown by the almost
same performance by the pinned and unpinned configurations. In the unpinned
configuration, vCPUs may migrate to the other die.

Dual Socket Results: To include the NUMA effect, we use a dual-socket
system in which each socket has four cores. Figure 3 presents the execution
times with the dual-socket system normalized to those of the native system.
In this experiment, the vCPUs are not pinned to physical cores (and thus the
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Fig. 3. Dual socket (unpinned vCPUs): execution times with 1, 4, and 8 vCPUs
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Fig. 4. Dual socket (pinned vCPUs): execution times with 1, 4, and 8 vCPUs

Xen scheduler can migrate the vCPUs as necessary). Unlike the previous single
socket results, the performance overheads by virtualization are significant. Only
when one vCPU is used, the performance degradation is relatively small 12%
on average. However, when four and eight vCPUs are used, the performance
degradations become 16% and 37% on average respectively.

To eliminate the effect of vCPU migration, we fix each vCPU to a physical
core. In this case, the Xen scheduler cannot migrate vCPUs. Figure 4 presents
the normalized execution times (to those of the native system) with the pinned
configuration. For the one and four vCPU configurations, the performance degra-
dations reduce to 8% and 9% respectively. However, for the eight vCPU config-
uration, the performance degradation increases slightly to 40%.

When the number of vCPUs is in the range from 1 to 4, pinning makes the
system use only one socket for the vCPUs and allocate the most of the memory
pages in the memory modules connected to the same socket. Therefore, pinning
for 1-4 vCPUs reduces the effect of NUMA and eliminates the cost of vCPU
migration across the shared L3 cache boundary. However, for 8 vCPUs, pinning
may eliminate the cost of vCPU migration across the shared L3 cache boundary,
but it does not mitigate the effect of NUMA. Eight vCPUs must use all the cores
in both sockets, but the memory pages of the VM are mostly located in one of
the socket. As shown in the single-socket results, the effect of vCPU migration
across the L3 caches is minor compared to the effect of NUMA.

3.2 Mitigating the NUMA effect

In this section, we isolate the effect of NUMA to further investigate its perfor-
mance impact on HPC applications. To explain the benefit of pinning in the
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Fig. 5. The worst and best range pinning schemes for 4 vCPUs (dual-socket)
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Fig. 6. NUMA-first optimization for 8 vCPUs (dual-socket)

dual-socket system (as shown in Figure 4), we evaluate the “worst” and “best”
case scheduling for the four vCPU configuration. Considering the NUMA effect,
the worst case scheduling is to map all four vCPUs on a socket, while all memory
pages used by the vCPUs are located in the other socket. The best case schedul-
ing is to map all four vCPUs on the same socket to which all the memory pages
are located. Figure 5 presents the execution times normalized to those of the
native system with the worst and best case scheduling for four vCPUs, as well
as the unpinned and pinned configurations. For the worst and best scheduling,
a vCPU is not fixed to a physical core, but fixed to a socket (range-pinned). In
this case, a vCPU can be mapped to one of the four cores in the socket.

As shown in Figure 5, the performance with the unpinned configuration is
slightly better than that with the worst case range-pinned configuration. How-
ever, the performance gap between the two configurations is very small. In the
unpinned configuration, the default Xen hypervisor schedules vCPUs to any
sockets, without considering the NUMA effect. The performance with the pinned
configuration is similar to that with the best case range-pinned configuration.
Pinning vCPUs has a similar effect to the best case configuration, since in our
experiments, all four vCPUs happen to be mapped to the same socket to which
their memory pages are located. However, we expect that blindly pinning vC-
PUs, without considering the memory affinity, will not improve performance
consistently.

However, for the eight vCPU configuration, it is not possible to find the best
case scheduling, since eight vCPUs must be mapped to 8 cores in two sockets.
To reduce the effect of NUMA, we modified the Xen scheduler slightly such that
it attempts to schedule vCPUs to the right socket. In the PARSEC applications,
all the eight vCPUs are not always used, since available parallelism dynamically
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Fig. 7. NPB execution times (unpinned vCPUs): varying vCPUs per VM
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Fig. 8. NPB execution times (pinned vCPUs): varying vCPUs per VM

changes. If less than eight vCPUs are used, active vCPUs are scheduled as much
as possible to the socket in which their memory pages reside. However, we do
not make any physical core idle, if there are active vCPUs not scheduled to any
core. Thus, if no core in the right socket is available, a vCPU will be scheduled
to the other socket. This rudimentary optimization, called NUMA-first, provides
a significant improvement in performance. Figure 6 presents the normalized ex-
ecution times with the unpinned, pinned, and NUMA-first configurations. With
the NUMA-first scheduling, the average performance degradation is reduced to
18% from 37% of the unpinned configuration. The NUMA-aware scheduling re-
quires further investigation to make it adaptable to more complex cases than
our configurations.

4 MPI-based Applications: NPB

In this section, we evaluate the performance overheads of virtualization with the
MPI-based NPB. For these experiments, we use two physical systems connected
by a 1gigabit Ethernet switch. For the experiments in this section, the half of
the total MPI processes are running in a system, and the other half are running
in the other system. For example, if the total number of MPI processes is 16,
8 processes are running in each physical system. For this evaluation of MPI
applications, we use only dual-socket systems.

Unlike shared memory applications, which must run on a single virtual ma-
chine, MPI-based applications can run with various numbers of virtual machines
per system. With two dual-socket systems, up-to 16 MPI processes run without
sharing cores. For 16 MPI processes, in each system, 8 MPI processes can use
a VM with 8 vCPUs, two VMs with 4 vCPUs, four VMs with 2 vCPUs, or
eight VMs with 1 vCPU. To support the same number of MPI processes, differ-
ent granularities of VMs can be used. Such VM granularity, or the number of



vCPUs per VM, may have some impact on the cost of communication among
MPI processes. MPI communications among processes in a VM are done only
within the guest operating system. MPI communications among the VMs in a
system do not access the network hardware, but the communications must pass
through the hypervisor and the domain0 VM. MPI communications among the
VMs in different systems must access the network hardware, hypervisor, and the
domain0 VM.

Figure 7 presents the execution times with different numbers of VMs for 16
MPI processes. For this result, vCPUs are not pinned to any cores. Firstly, for
all applications, using the largest VM (8 vCPUs per VM) is better than using
multiple VMs in a system. It is because MPI communications within a VM have
lower overheads than those across VMs. Secondly, for each application, if the
best VM granularity (8 vCPUs per VM) is used, the performance overheads on
MPI-applications by virtualization are much lower than those on shared memory
applications. Even though all the 8 cores are used for each system, the average
execution time is only 11% higher than that of the native system. Although these
MPI applications also suffer from the effect of NUMA, its effect on the overall
performance is relatively low, since the performance is also dependent upon the
performance of MPI communications. Due to the I/O activities, NUMA effect
does not dominate the overall performance.

Figure 8 presents the execution times with vCPUs pinned to physical cores.
Pinning vCPUs does not improve the NPB performance for the best VM gran-
ularity (8 vCPU per VM), with a similar 11% average increase of execution
times. However, pinning improves performance for any VM granularity other
than 8 vCPU per VM.

5 Related Work

The effects of virtualization on the performance of applications have been stud-
ied in previous work. Due to space limitation, we review some of such work in
this section. Huang et al showed that I/O virtualization overhead is the major
issue for virtualization by evaluating the performance of NPB, and proposed
VMM-bypass I/O to reduce I/O virtualization overhead [9]. In [12], the effects
of resource sharing on the performance of HPC applications were studied in a
virtualized multicore cluster. Specially, the authors focused on how the commu-
nications of HPC applications are affected when multiple VMs share a single
Infiniband interconnect. In [14], the performance of the compute-bound bench-
mark applications was analyzed, and in [11], the performance overheads for net-
work I/O device virtualization were measured. A simulation-driven approach
was presented in [7], which analyzes the virtualization overheads of I/O inten-
sive workloads. The performance impact of a consolidated workload, which is
composed of server applications such as a web server and a database server, was
evaluated in [5]. In our paper, we focus on how the complex memory hierarchy
affects the performance of HPC applications in virtualized systems, which is not
considered in the above previous work.



A VM-aware MPI library was developed in [8]. It can reduce the commu-
nication overhead for HPC applications, by allowing VMs in the same physical
host to communicate via shared memory. To improve I/O performance, Liao et
al presented cache-aware scheduling which co-schedules Dom0 and I/O intensive
DomUs to communicate more efficiently via a last level cache, and credit-stealing
which steals credits for I/O intensive vCPUs [10]. It is our future work to de-
velop VM scheduling techniques that are aware of memory hierarchy in multicore
systems for HPC applications.

The performance of a cloud computing service, Amazon EC2, has been eval-
uated in [15, 16]. The results show the performance degradation of NPB (in [15]),
and unstable network throughput (in [16]), indicating that the cloud computing
service is not mature yet.

In [13], the implication of varying the number of application processes per
VM was studied, but unlike our work, only two simple configurations, two VMs
with 1 process each and one VM with two processes, were used.

6 Conclusion

In this paper, we evaluate single and dual socket multicore systems with the
Xen hypervisor. For shared memory applications in dual-socket systems, NUMA
awareness is critical for performance, while the overheads of virtualization are
minor in single socket systems. As the complexity and non-uniformity in mem-
ory systems increase, the importance of NUMA and cache awareness in VM
scheduling will become critical, especially for shared memory applications. For
MPI-based applications, the NUMA effect is much smaller than that with the
shared memory applications. However, the granularity of VMs (the number of
vCPU per VM) becomes critical for the overall performance
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