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ABSTRACT
In this study, we rethink the existing memory placement
strategies for multi-chip server systems. Processor vendors
such as Intel and AMD have introduced the multi-chip based
high density server architecture for large-scale data centers.
With the advance of the processor-interconnect, multiple
CPU chips are connected through a scalable point-to-point
network such as Intel UPI and AMD Infinity Fabric. Nev-
ertheless, the existing operating systems including Linux
do not fully take advantage of the processor-interconnect
to manage the memory traffic across memory nodes. We
present two memory placement techniques exploiting the
point-to-point interconnect to improve overall throughput
while minimizing the hot-spot problem.
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1 INTRODUCTION
To reduce the cost of server infrastructure, the multi-chip
server architecture [3, 5] has been widely used to build cost-
effective servers as a scale-up design in large-scale data cen-
ters. Through a high-speed interconnect such as Ultra Path
Interconnect (UPI) and Infinity Fabric (IF), multiple chips
are connected point-to-point to each other. Such multi-chip
memory systems are analogous to traditional non-uniform
memory accesses (NUMA) systemswith high chip counts [7]1.
1The term node and chip are used interchangeably throughout this paper.
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Figure 1: Default fallback node (chip) list used inmem-
ory allocation

Although there are significant efforts to optimize the per-
formance of applications in traditional NUMA systems [2,
4, 6, 8], those studies did not explore the aspects of remote
memory placement. In this study, we rethink the memory
placement strategy on multi-chip server architecture espe-
cially when we are unable to allocate memory in the locally
attached memory. Since remote memory accesses lead to
a significant system performance degradation, Linux em-
ploys the default (first-touch) strategy which primarily
allocates pages on the local memory where the requester
is currently running on. However, when there is a lack of
free pages in the local memory, remote memory accesses
are inevitable. Figure 1 depicts the fallback node list which
is used for selecting a remote node in memory allocation
for each CPU chip. Remarkably, the default fallback list is
a static linked list that is sorted simply by the chip number
and does not change over time.

Even though there are multiple remote memory nodes, the
memory requests are not dispersed across remote nodes in
the current design. Although this approach performs reason-
ably well in small-scale NUMA machines such as dual-chip
machines, the current design of the fallback paths fails to
take full advantage of the emerging multi-chip NUMA sys-
tems which provide diverse paths of memory placement. We
refer the advantage of the systems as path diversity. When
utilizing remote machine’s memory in disaggregated sys-
tems, the same consideration can be also applied. As a result,
the memory access traffic can be concentrated on a (or few)
certain memory node while other nodes are underutilized
or even idle. This can lead to performance degradation and
interference.
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The goal of this study is to improve the overall system
throughput while minimizing performance interference by
balancing the memory traffic of multi-tenant applications
across chiplets. To minimize this problem, we explore two
new memory placement strategies. First, we take a hybrid
approach of first-touch and page-interleave strategies.
Our allocator follows first-touch approach to minimize
remote memory accesses if the local node has free space
available. If we fail to allocate memory on the local node
due to the lack of memory, we switch our strategy to evenly
distribute the memory requests across remote nodes in multi-
socket systems like page-interleave policy. Second, we
enable the operating system to dynamically select a remote
node in such large memory machines by considering the
memory usage for each node, instead of relying on the static
fallback node list. It alleviates the potential performance
interference by avoiding memory allocation from highly
occupied memory nodes. Third, we investigate a potential
applicability of dynamic migration on runtime. We optimize
few features of AutoNUMA [9] and combine it with our
proposed scheme.
Our preliminary experimental results show that our pro-

posed schemes improve the overall system throughput while
minimizing performance interference for various combina-
tions with SPECCPU2017, NAS, and graph benchmarks.

2 MOTIVATION AND BACKGROUND
2.1 Large-Memory Systems
Multi-chip systems have been gaining traction to build scale-
up servers in data centers because it can easily provide high
core counts and memory capacity. Recently, AMD revealed a
multi-chip server architecture which has four processors dies
in one package. Each processor die has its own memory con-
troller for scalability and the dies are connected through the
point-to-point interconnect called Infinity Fabric [5]. Intel
also introduced the multi-chip based high density servers [3].
In this study, we use a four-chip Intel machine where each
chip is equipped with a 16GB DDR4 DIMM and the chips are
connected point-to-point through the Intel UPI technology.

A distinct characteristic of such multi-chip systems is that
accessing any of the remote memory nodes can be done
in single hop through the point-to-point network. Figure 2
shows the access latency for a local memory (Node 0) node
and three remote memory nodes (Node 1, 2, and 3) on our
Intel server and two AWS instances based on AMD EPYC [1].
We used the Intel MLC benchmark to measure the latency. We
can observe consistent performance in accessing any remote
memory node out of three regardless of the configurations.

According to this experiment, we conclude that the mem-
ory placement should exploit the path diversity so that it
can avoid the hot-spot problem to a remote memory node.
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Figure 2: Read access latency (local vs. remote)

Furthermore, we would expect that the memory traffic is
equally balanced across all the remote memory nodes in the
first place.

2.2 Memory Placement Problem
We explain the observed inefficiency of the memory allo-
cator on the multi-chip NUMA machines. First, the default
(first-touch) strategy can make a hot spot to a certain re-
mote memory node. If the local memory is fully occupied,
the Linux kernel looks up free pages from a remote node as
much as possible. For example, if the local memory (Node-
0) is not enough to serve all the required memory for the
application, the subsequent requests for memory allocation
would be made on a remote memory (Node-1), specified in
the fallback list depicted in Figure 1, rather than evenly dis-
tributed across remote nodes (Node-1, 2, and 3). Thus, we
lose the opportunity to utilize diverse paths to Node-1, 2,
and 3, for balancing the remote memory traffic. Moreover,
the applications running on Node-1 can be highly affected
by the memory bandwidth contention.

Second, the current memory allocator fails to find the best
remote node. When selecting a remote memory node, it does
not consider how much memory space is currently being
used because the fallback node list is sorted by the node
number and not changed at runtime. As a result, it can lead
to imbalanced memory usage across memory nodes, making
hot spots. For example, suppose two applications running on
Node-0 and 1, respectively, and Node-2 and 3 are idle. Even
though the Node-2 and 3 are idle, the application running
on Node-0 would ask the memory of Node-1 when Node-
0’s memory is fully occupied. Then, the performance of the
application on Node-1 can be significantly degraded due to
the resource contention from the two applications.

2.3 Dynamic Memory Migration
Linux has adapted AutoNUMA [9] which provides thread
and memory placement to reduce remote access and ensure
better local access as possible. It is a supplement of mem-
ory management since the initial memory placement of the
kernel does not always result in the best performance. The
kernel using it keeps tracking numa_faultswhile workloads
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Figure 3: First-touch vs. Hybrid placement

are running. If the kernel thinks that there are heavy accesses
on remote nodes, the kernel judiciously concludes whether
it brings remote data to the local node or moves threads to
remote nodes. This dynamic migration works in the gen-
eral case. However, AutoNUMA cannot migrate pages to
the local memory when the local memory is fully occupied.
For instance, when a large footprint workload uses memory
beyond the local memory, AutoNUMA may not be able to
move data pages to the local node even if they have many
remote accesses. Besides, AutoNUMA may migrate threads
to remote nodes. As a consequence, it generates undesirable
thread interference because there are other workloads on
remote nodes.
Thus, we conclude that dynamic migration would not

efficiently work on our scenario so initial memory placement
and smart allocation during runtime are crucial. In this study,
our scope is primarily to analyze memory placement and
build alternative strategies for the default memory placement
of Linux, but also discuss runtime policy in short.

3 DESIGN
This section presents simple yet effective design principles
taking advantage of the path diversity of the point-to-point
interconnection. We introduce two memory placement tech-
niques balancing remote memory usage across them. The
main benefit is to avoid that memory accesses are concen-
trated on a (or few) certain memory node(s).

3.1 Static Memory Placement
We first present a static approach to allocate memory called
hybrid allocation policy: a combination of first-touch
and page-interleave policies. In the stock Linux operat-
ing system, when a thread is not able to allocate memory
on its local memory node, the kernel tries to allocate the
memory on other remote memory nodes according to the
static fallback memory list depicted in Figure 1. Suppose
App A in Figure 3 runs out of local memory (DIMM-0). By
consulting the fallback list, the traditional operating system
attempts to allocate memory on a remote node (DIMM-1). If
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Figure 4: First-touch vs. Usage-aware allocation

the memory access traffic from App A is significant, it can
affect the performance of App B due to performance interfer-
ence. On the other hand, our hybrid policy interleaves the
allocation requests across three remote nodes evenly. This
approach can reduce the memory hotspot problem while
exploiting the abundant memory bandwidth across nodes.
At the beginning of allocation, 1 our approach follows the
same behavior as what the default allocator does. However,
when the application needs more memory than the memory
DIMM-0 has, 2 it utilizes each remote DIMM to obtain the
full advantage of memory bandwidth.

3.2 Dynamic Memory Placement
Although the hybrid policy is simple and effective, it does
not consider how each memory node is being utilized. To
overcome such a limitation, we propose a usage-awaremem-
ory allocation policy that dynamically selects a remote mem-
ory node in a multi-chip NUMA system. Instead of statically
choosing the nextmemory nodewhen the local memory is no
free space, it considers the memory usage for each memory
node and then allocates memory on the least used mem-
ory node. Figure 4 depicts our usage-aware scheme. Similar
to the hybrid policy, the initial allocation is the same as
the first-touch policy. However, if the operating system
is unable to allocate a page from the local memory node
due to the lack of free space, the kernel will find the other
memory node to get the page. 1 In the first-touch policy,
it selects DIMM-1 according to the static fallback list. 2
Our usage-aware approach steers such requests to DIMM-2,
which is the least utilized memory node. As a result, it leads
to minimizing such performance interference.

3.3 Hybrid vs. Usage-aware Placement
Although both placement strategies outperform the default
first-touch policy, they perform sub-optimally and com-
plement each other. For the hybrid policy, it distributes
memory across the multiple memory nodes, thereby ben-
efiting from the wide memory bandwidth. As a result, the
policy inevitably interferes with all workloads running on
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the remote nodes. The amount of interference on some work-
loads is lighter than the default policy, but some workloads
may have sensitive to mere interference. On the other hand,
usage-aware policy shows different outcomes. Since it tries
to find a node that has the freest pages, it may keep falling
onto the same node. For instance, in Figure 4, DIMM-2 is the
target node for allocation. As far as other remote DIMMs
have less free pages than DIMM-2, the kernel would only
choose DIMM-2. Due to this feature, the usage-aware policy
is able to overcome interference on every node caused by
the hybrid policy. However, this characteristic may show a
harmful effect on the performance of an application located
on DIMM-2. If it runs similar to the above case, focusing only
on the same node, the workload would not take advantage
of multiple DIMM’s bandwidth. Furthermore, selecting the
same node leads to centralizing the access into the single
node (e.g. DIMM-2), causing severe interference to the tenant
workload. In some cases where all the remote memory nodes
have the same amount of free pages, usage-aware memory
allocation works just like page-interleave policy across
them. This case may lessen the skewed access problem.
With this perspective, we realize that memory manage-

ment during runtime is required to maximize the perfor-
mance of multiple applications. For checking the effective-
ness of dynamic management we extend AutoNUMA func-
tions to ease the skewed remote accesses. We did evaluate
and discuss this feature; however, there are overheads of
dynamic migration so we leave a further deep study on this
as future work.

3.4 Summary
In this preliminary study, we focus on how we can exploit
the path diversity in terms of memory placement. The main
contribution of this paper is to improve performance and
mitigate interference easily with simple alternatives. We im-
plement our schemes on top of the Linux operating systems
easily because many building blocks already exist.

4 IMPLEMENTATION
Hybrid and Usage-aware policy: Our policies utilize pro-
vided functions in Linux. Linux already keeps track of the
number of allocated and free pages in each memory node. In
Linux, struct pglist_data represents a node struct and
it contains several zones (struct zone). They hold infor-
mation that how many pages are allocated or how many
free pages are available. By leveraging the information, we
are able to statically or dynamically pick the next best node
for allocation in each policy. Note that when we consider
the number of allocated pages, these include all active and
inactive anonymous and file pages.

AutoNUMA extension: We make use of few functions of
AutoNUMA and enhanced them for dynamic migration. Au-
toNUMAcollects the local and remote statistics of numa_fault.
We use these data to estimate which node suffers from ex-
cessive accesses caused by multiple applications. With this
information, we periodically move pages from the busiest
node that has the most memory traffic to the least busy one.

5 EVALUATION
We evaluated first-touch (FT), page-interleave (PI), our
proposed schemes, hybrid (HY), and usage-aware (UA) on
a multi-chip NUMA system equipped with four Intel Xeon
Gold 6242 processors (16 physical cores). We use 4 sockets
machine and each of them has a single CPU chip. For PI
policy, we allow each workload to use all memory nodes.
For instance, if a page is allocated on Node-0 at first, the
next time another page will be allocated on Node-1 and so
on. When a page is allocated on the last node then the next
page will be assigned on the very first node (Node-0). Each
NUMA node has a 16 GB DRAMDIMM so that the total main
memory is 64 GB. We used Linux kernel 5.3 as the baseline
of our implementation. We select memory-intensive applica-
tions: SPECCPU2017, MG from the NAS parallel benchmark,
Liblinear, and GUPS from a HPC Challenge benchmark for
evaluations. We evaluate them with different mixed sets to
observe various access and allocation patterns. Each mixed
case differs only from the first application on Node-0. On
Node-0, we configure a benchmark that has a large working-
set so that it requires the use of a remote memory node
while other SPEC benchmarks running on Node-1, 2, and 3
fit on their local memory node. We pick 3 memory-intensive
workloads (mcf, fotonik3d, and cam4) from SPEC. The de-
fault option of AutoNUMA is enabled in the current Linux.
We configure the same option, but this function does not
work as intended for two reasons. First, AutoNUMA does
not move pages on the fully allocated node. Second, threads
of applications are pinned on each socket. Thus, the system
cannot benefit from using the AutoNUMA. All performance
numbers are measured three times and their average values
are applied on the graphs.

5.1 Performance of Proposed Policies
We deploy four applications on each CPU chip. All the appli-
cations are tuned with 16 threads to fully utilize the cores
on the chip. This fully utilized environment can exhibit in-
tensive usage of memory bandwidth for each application.
Moreover, memory interference between applications due
to using the same memory node can be shown significantly
in this environment. Figure 5 shows the speedup of individ-
ual applications normalized to FT policy. For mg, liblinear,
gups, and mcf, PI policy can provide better performance than
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Figure 5: Performance comparison of first-touch (FT), page-interleave (PI), proposed hybrid (HY) and
usage-aware (UA) schemes on fully utilized environments (Lower is better)
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cies for mix-1

FT policy because performances of these applications are
bounded in the memory bandwidth. In other words, those
applications will improve performance when they are able
to use an extra memory channel or bandwidth. On the other
hand, the performance of cam4 benchmark is significantly
degraded on PI policy. Differently from PI policy, HY and UA
have the benefits of not (or little) impairing the performance
of cam4. For mcf, it suffers from interference from mg and
liblinear on FT policy. However, this workload has less
interference in HY and UA policy. Thus, it has a better re-
sult than FT policy. The reason for the improvement of mcf
on UA policy can be also explained by using extra memory
bandwidth on Node-3. fotonik3d is considered as memory-
intensive workload, but it is not sensitive to interference
from other workloads.

For better understanding of memory interference, Figure 6
presents how four applications utilize each memory node.
Compared to FT scheme, HY policy places pages of mg on
each remote node as the interleave mode when the local
memory cannot take further memory allocation. For UA pol-
icy it distributes the remote memory allocation of mg across
Node-1, 2, and 3 based on memory usage. Specifically, when
mg requests more memory, the first targeted node is Node-1
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Figure 7: Memory usage comparison for dynamic po-
lices

because Node-1 has fewer allocated pages than other remote
nodes. After that, the kernel will select Node-2 and Node-3
according to their memory usage. Due to this dynamic mem-
ory placement of UA, we can improve overall performance
by minimizing interference.

5.2 Performance Comparison with
Extended Dynamic Migration

We compare our proposed schemes with the extended Au-
toNUMA features to investigate dynamic migration on our
targeted scenario discussed in Section 3.3. We evaluate it on
the same experimental setup in the previous section. The
first modified one, dynamic migration (DM), is to provide
dynamic data migration on the remote node when a certain
node is highly stressed due to excessive interference. The
second policy is the optimized DM, but augmented with UA
policy (UA+DM). This policy basically operates like UA at
allocation time. However, when the system needs to balance
traffics across nodes, it follows DM policy. Figure 7 clearly
presents how those features operate. For DM and UA+DM,
the memory usage of mg on Node-1 shows decreasing pattern
as time goes by while its usage on Node-3 is increasing. This
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Figure 8: Performance comparison of first-touch, usage-aware, dynamic migration (DM), and usage-aware +
dynamic migration (UA+DM) schemes on fully utilized environments (Lower is better)

phenomenon tells that memory traffic is moving into Node-3
from Node-1. As a result, not only does mg get the abundant
bandwidth from multiple paths, but mcf can also effectively
run by minimizing a negative interference of the noisy neigh-
bor (mg). The result of those experiments is shown in Figure 8.
In all sets of mixes, DM and UA+DM demonstrate better or
similar performance with UA policy. The basis of improve-
ment is that some workloads being pressed by excessive
traffics are relieved by DM. For DM, the initial allocation
works as the FT at allocation time so this inefficient alloca-
tion curtails the amount of performance improvement. On
the other hand, UA+DM employs UA policy; therefore, it
eliminates the inefficient placement.
Overall, the optimized AutoNUMA does gain improve-

ment over the FT and PI. Nevertheless, it still needs more
optimization. The AutoNUMA facility relies on the page fault
mechanism causing performance overheads. It periodically
scans a fixed amount of memory pages of the virtual mem-
ory, making them inaccessible to identify remote memory
accesses. Once the pages are accessed again, it incurs a page
fault. The cost of handling page faults is non-negligible. In
addition, migrating pages to a different memory location
requires the costly TLB shootdown operation. As a result,
the effectiveness of dynamic page migration can be reduced.

6 PRIORWORK
There are significant efforts to optimize the performance of
applications in NUMA systems. Especially, Carrefour [4] has
a similar goal to ours. This work proposed memory traffic
managements for NUMA systems by threads and memory
placement. Carrefour does address memory placement to
mitigate the skewed traffic on a certain node and also reduce
remote access. However, this work does not take account of
interference between multiple applications. Moreover, there
is a potential problem on their main feature, replication when
multiple workloads are running. Multiple workloads should
be isolated as possible to avoid interference among them. If
replication is applied, replication pages will take a portion
of memory resource of other workloads, thereby leading to
interference. Unlike their approach, our work focuses on di-
minishing interference of multiple workloads with relatively

simple approaches. Blagodurov et al. [2] studied the memory
contention in NUMA and proposed a NUMA-aware sched-
uling. Lepers et al. [6] conducted an extended work on the
asymmetry of the processor-interconnect. However, those
prior studies did not consider the case where the memory
footprint cannot be fit on the local memory, leading to the
use of remote memory.When we are unable to place memory
locally due to some reasons such as the lack of capacity, the
next best plan we should prepare is to minimize performance
impacts to all the applications sharing the system. In the real
world, it is not always possible to make all the required mem-
ory on the local node. While running systems, memory is
fragmented so that we need to leverage the remote memory
in the NUMA environments. Thus, it is important to allocate
memory on the remote nodes by minimizing performance
interference.

7 DISCUSSIONS AND CONCLUSIONS
Decreasing the opportunity to localize data: It is known
that Linux localizes data of a process in a (or few) NUMA
domain(s). Potentially, this design approach can improve
performance through thread migration rather than page mi-
gration. The proposed policy also follows a rule, keeping the
data for a process to the local memory. However, when the
system allocates the data to the remote memory, it disperses
the data across NUMA domains, rather than accumulating
it on the same NUMA domains. Therefore, it is difficult for
the scheduler to minimize the remote memory accesses. In
our future study, we will investigate gathering the scattered
memory pages on a node when the memory space becomes
available at runtime.

Node Local Remote-1 Remote-2
0 1 2 3 4 5

0 10 16 16 32 32 32

Table 1: Distance between Node-0 and other nodes in
AWS m5a.24large [1]
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Generalization for different typologies: On higher-end
models, the topology of the processor-interconnect is com-
posed of hierarchical paths with the variation of the distance.
For example, the m5a.24large AWS instance consists of six
nodes based on AMD EPYC 7571. TABLE 1 shows the node
distance from the perspective of node-0. This topology can
be seen in Intel eight-socket servers. Although we did not
explicitly deal with the hierarchical topology, our approach
can be extended easily. When distributing remote memory
placements, we first consider the remote nodes which have
the same distance. Once we do not find a remote node in the
closest neighbor group (Remote-1), then we try to search a
node in the faraway group (Remote-2).

8 CONCLUSIONS
Existing memory placement policies in the Linux operating
systems can lead to the hot-spot problem while not exploit-
ing the abundant remote memory bandwidth. In this paper,
we proposed two alternative memory placement schemes
and evaluate them with the extension of dynamic migra-
tion. Our policies take advantage of the path diversity of the
processor-interconnect used in multi-chip NUMA systems.
We plan to extend this preliminary design of the dynamic
traffic management to be scalable and robust for diverse
workload scenarios.
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