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• Important to serve incoming inference requests with low latency
• Existing inference serving systems

• Keep DL models in GPU memory, enabling requests to be immediately served
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• Number of DL models is growing every year

Growing Number of DL Models

Inference server provider’s concern:

More number of models

1. Limited GPU memory

2. Increasing the number of servers

3. Increasing the operating cost of servers 
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Cold-start

Leveraging Host Memory
• One promising approach to reduce the cost of GPU servers

• Extend the number of models beyond the GPU memory limit
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Cold-start

Cold-Start Problem
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• However, such the cold-start affects the quality of user experiences
• Makes it difficult to serve inference request within the desired SLO



Cold-start

Cold-Start Problem
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• However, such the cold-start affects the quality of user experiences
• Makes it difficult to serve inference request within the desired SLO

The remaining challenge is to minimize the cold-start latency when 
loading deep learning models into GPU memory



• Pipeline the loading and execution of each layer
• Execute a layer as long as it is prepared in the GPU
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Execution Stall

Pipelining Approach (Bai et al. OSDI’20)

Stall time still takes up
a large portion of inference time

Our work focused on reducing the stall time

Pipeline Approach

7* Z. Bai et al. Pipelined Context Switching for Deep Learning Applications (OSDI’20)



• Reducing the cold-start latency
1. Leveraging direct-host-access

• Applying direct-host-access to layers that can reduce stall time with direct-host-access

2. Leveraging parallel model transmission

• Further reduce stall time by using multi-GPUs when loading models

• Incorporating the above two approaches
3. DeepPlan: automatically generating optimal inference execution plans

Our Approaches
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Two Methods for Computing on GPU

Load-then-execute
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• We analyzed the performance for layers used in popular DL models

Performance Analysis for Direct-Host-Access

Embedding: BERT-Base, Convolution: ResNet50, Fully Connected: BERT-Base

Apply DHA to layers which have performance benefits
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1. DHA doesn’t need to reserve the GPU memory
Þ DL model can be served with less memory usage
Þ Keep more models in GPU memory

2. While GPU executes a layer using direct-host-access, it can simultaneously 
load other layers
Þ Reduce or even eliminate pipeline stall
Þ Speed up model execution

Advantages of Direct-Host-Access
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• Acceleration of L1 execution

Leveraging Direct-Host-Access
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2. Advance the loading of the L2 layer and the execution of the L1 layer

3. The L2 layer can start earlier than with the simple pipeline approach

1. Replace the L1 layer with direct-host-access



• Reduce stall time of the Ln layer

Leveraging Direct-Host-Access
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• Utilize multi-PCIe lanes to load a single DL model
1. Divide the DL model into two partitions

2. Distribute the partitions across two GPUs

3. Merge the partitions into the GPU that has the first partition

Parallel-Transmission (PT)
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• Cooperative parallel-transmission with direct-host-access to accelerate 
model provisioning

Leveraging Parallel-Transmission
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• Modern DL models and GPU servers are becoming diverse and complex
• DL models have too many layers

• A wide variety of server environments

• Number of GPUs, GPU type, Interconnect, etc.

• Applying DHA and PT manually to the layers of models is challenging

• An automatic system could be needed to address these challenges
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DeepPlan
• Automatically generating an optimal inference execution plan for a given 

server environment and model
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Experimental Setup
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Hardware Setup Four V100 GPUs with NVLink (AWS p3.8xlarge instances)

Comparison Non-pipeline (Baseline), PipeSwitch* (OSDI’20), DeepPlan (Ours)

Framework LibTorch v1.9.1 (PyTorch C++)

Workloads
Vision models ResNet50, ResNet101

NLP models BERT, RoBERTa

Source code: https://github.com/csl-ajou/DeepPlan

* Z. Bai et al. Pipelined Context Switching for Deep Learning Applications (OSDI’20)

https://github.com/csl-ajou/DeepPlan


Single Inference with Batch Size 1
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• DeepPlan outperforms PipeSwitch across all models
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• 99% latency, goodput, and cold-start

• Used Poisson distribution

• Target SLO: 100ms

• Maximum number of instances without 

violating SLO

• PipeSwitch: 120

• DeepPlan: 180

• Goodput at 180 concurrency

• Improved by 1.84x compared to PipeSwitch

• GPU memory space required for models

• DeepPlan keeps 24 more instances

Increasing the Number of Models

1.84x

PipeSwitch
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• Trace of Microsoft Azure Functions
• Heavy sustained requests, fluctuations and spikes

• 99% latency
• DeepPlan: 100ms ↓
• PipeSwitch: 150ms ↑

• Goodput
• DeepPlan: 98% ~ 99%
• PipeSwitch: 81% ~ 98%

Real-World Workloads (3 hours)
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• Cold-start affects the quality of user experiences

• We exploited DHA and PT for minimizing cold-start latency

• We built DeepPlan for automatically generating inference execution plans

• DeepPlan could significantly reduce the stall time and improve the 
performance of serving inferences

Conclusion
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