
Appears in the 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)

Subspace Snooping: Filtering Snoops with Operating
System Support

Daehoon Kim, Jeongseob Ahn, Jaehong Kim, and Jaehyuk Huh

Dept. of Computer Science, KAIST

{daehoon, jeongseob, jaehong, and jhuh}@calab.kaist.ac.kr

ABSTRACT
Although snoop-based coherence protocols provide fast cache-
to-cache transfers with a simple and robust coherence mech-
anism, scaling the protocols has been difficult due to the
overheads of broadcast snooping. In this paper, we pro-
pose a coherence filtering technique called subspace snoop-
ing, which stores the potential sharers of each memory page
in the page table entry. By using the sharer information in
the page table entry, coherence transactions for a page gener-
ate snoop requests only to the subset of nodes in the system
(subspace). However, the coherence subspace of a page may
evolve, as the phases of applications may change or the op-
erating system may migrate threads to different nodes. To
adjust subspaces dynamically, subspace snooping supports
a shrinking mechanism, which removes obsolete nodes from
subspaces.

Subspace snooping can be integrated to any type of coher-
ence protocols and network topologies. As subspace snoop-
ing guarantees that a subspace always contains the precise
sharers of a page, it does not restrict the designs of coher-
ence protocols and networks. We evaluate subspace snoop-
ing with Token Coherence on un-ordered mesh networks.
For scientific and server applications on a 16-core system,
subspace snooping reduces 44% of snoops on average.

Categories and Subject Descriptors
C.1.2 [Processor Architecture]: Multiple Data Stream
Architectures (Multiprocessors); B.3.2 [Memory Struc-
tures]: Design Styles—shared memory

General Terms
Performance

Keywords
cache coherence, snoop filtering, subspace snooping

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10 September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

1. INTRODUCTION
The two broad classes of coherence protocols, snooping

protocols and directory protocols, have traditionally tar-
geted different scales of systems. Snooping systems offer
low-cost, simple coherence at small system scales. Direc-
tory protocols have been built to scale much higher, but at
greater cost and complexity. In snooping protocols, there is
no explicit storage, or directory, to track the sharing states
of memory blocks, and coherence requests must be broadcast
to all the nodes. Such broadcast-snooping allows fast two-
hop cache-to-cache transfers, and eliminates the complexity
of maintaining the directory. However, scaling snooping pro-
tocols has been difficult due to the overheads of broadcasting
requests and looking up the cache tags of all the nodes for
snooping.

However, a large number of snoop requests in snooping
protocols are unnecessary as the majority of memory blocks
are not shared by all the nodes. There have been several
recent studies to filter such unnecessary snoop requests by
tracking sharing states at region granularity. Using the shar-
ing states, the filtering techniques remove unnecessary snoop
requests at requesting sources [23, 9], at receiving destina-
tions [24], or at intermediate routers during the transmission
of the requests [2]. All the techniques use some on-chip ta-
bles to store the sharing states of the most recently accessed
regions.

In this paper, we propose a new coherence filtering tech-
nique, called subspace snooping, based on the page table
support of operating systems. To the best of our knowl-
edge, this is the first study to use the page table to store
potential sharer lists for snoop reduction. Subspace snoop-
ing filters snoops at requesting sources, reducing both snoop
tag lookups at the destinations, and network traffic for trans-
ferring snoop requests. Unlike prior work based on the di-
chotomy of private and shared spaces [23, 9], in subspace
snooping, a set of sharers defines a subspace for a page.

In the rest of this paper, a sharer of a memory region
is a node which accesses the region at least once during a
certain time period. A subspace is a stable subset of nodes
sharing a region of memory consistently. These subspaces
can be dynamically evolving, so long as they are stable for
sufficiently long to be useful. While subspace snooping does
not achieve the sharing-list precision of directory protocols,
it has the potential to offer many of the benefits of snooping
protocols with a reduced number of total snoops.

Subspace snooping uses an OS-based mechanism to main-
tain subspaces at page granularity. The set of sharers for
a page (the subspace of a page) is recorded in the OS page

table entry, and translation look-aside buffers (TLBs) also
keep the subspace information. For a coherence transac-
tion, requests are delivered only to the nodes in the sub-
space. The subspace is guaranteed to be the superset of the
current precise sharers which have a copy of the requested
block in their caches(superset subspace property). The prop-
erty allows subspace snooping to be used with any type of
snoop-based coherence protocols and interconnection net-
works.

Subspace snooping does not add a significant hardware
complexity to existing snoop-based systems and is easily
adaptable to novel coherence techniques such as Token Co-
herence and In-network Coherence Ordering [19, 3]. Com-
pared to prior work to filter unnecessary snoop traffic, the
contributions of this paper are as follows.

• Unlike the region-based source filtering techniques [23,
9], subspace snooping does not simply divide the ad-
dress space to private and shared regions. In real work-
loads, a significant number of coherence accesses occur
on partially shared pages, i.e. pages shared by more
than one node, but less than the total nodes. Forc-
ing broadcast-snoops for those partially shared pages
incurs numerous unnecessary coherence requests. Sub-
space snooping can filter unnecessary snoops for par-
tially shared pages by tracking all possible sharers.

• Subspace snooping requires a relatively small amount
of extra hardware. Only the sizes of page table in
the memory and TLBs may modestly increase to keep
subspace information. Some systems with 64-bit page
table entries have unused bits in the entries. For a
small scale multicore(under 16 or 32 cores), subspace
snooping may not require any increase in the page
table size. On the other hand, the effectiveness of
region-based snoop filters using hardware tables can
be sensitive to the table capacity and the working set
of applications. Furthermore, checking and updating
the tables frequently for coherence transactions also
consume power.

• As a coherence filtering technique, which removes un-
necessary requests at requesting sources and supports
the superset subspace property, subspace snooping is
not dependent on the implementations of underlying
coherence policies and interconnection networks. For
example, In-Network Coherence Filtering (INCF) which
filters requests at routers, requires a deterministic rout-
ing policy with a packet-switched network [2]. How-
ever, subspace snooping does not impose such a re-
striction on network implementations.

In this paper, we apply subspace snooping to Token Co-
herence, which provides simple ordering support on un-ordered
networks, without indirection through home nodes [19]. How-
ever, any type of snoop-based coherence will work with sub-
space snooping. For scientific and commercial workloads,
subspace snooping reduces the total global snooping by 44%
on average for a 16-core system, compared to the base To-
kenB protocol. Filtering snoop requests at requesting sources
reduces network traffic and power consumption significantly.
The global network traffic is reduced by 27% for 16 cores.

A set of sharers at page granularity may change dur-
ing program execution. Applications may have phases with

different sharing patterns and the operating system may
migrate threads to different physical cores. Such sharer
changes may decrease the effectiveness of subspace snoop-
ing, as subspaces may contain nodes, which no longer access
the pages. To address such dynamic subspace changes, we
investigate a subspace shrinking mechanism, which removes
obsolete nodes from the subspaces. Simulation results show
that for most of the applications in our benchmarks, shrink-
ing is not necessary with only 4% more snoop reduction
from the base subspace snooping. For our benchmark appli-
cations with relatively short execution times, shrinking does
not provide enough benefit to justify the extra design com-
plexity. However, the shrinking mechanism will be necessary
to support long-running applications.

In the rest of this paper, we first discuss the prior work
on snoop filtering and other related work in Section 2. In
Section 3, we present the sharing characteristics of applica-
tions at coarse-grained page unit. In Section 4, we describe
the subspace snooping architecture with a subspace shrink-
ing mechanism. In Section 5, we discuss the costs of im-
plementing subspace snooping, and the integration of sub-
space snooping to existing cache coherence protocols and
networks. In Section 6, we present experimental results.
Section 7 concludes this paper.

2. PRIOR WORK

2.1 Snoop Filtering Techniques
There are several studies to reduce unnecessary snoops

in snoop-based coherence, and subspace snooping is based
on the prior work on snooping filtering techniques. Region-
Scout and Coarse-Grain Coherence Tracking (CGCT) pre-
vent snoop requests from broadcasting for private data at
the requesting source. Subspace snooping also filters out un-
necessary snoop requests at the source, and thus is able to
reduce both network traffic and snoop tag lookups. Region-
Scout records the states (private or shared) of coarse-grained
regions in per-node tables [23]. Subspace snooping differs
from RegionScount in that subspace snooping does not sim-
ply divide coherence space into private or shared states.

CGCT (Coarse-Grain Coherence Tracking) maintains an
additional coarse-grained coherence protocol in addition to
the conventional coherence at the cacheline granularity [9].
CGCT also relies on the dichotomy of coherence space into
private or shared. Compared to RegionScout, CGCT is able
to further reduce the requests by not broadcasting requests
for clean-shared data. However, even if a clean copy exists in
other on-chip caches, the clean data must be supplied from
the external memory. Therefore, bypassing cache-to-cache
transfers for the clean-data can reduce broadcasts, but it
may increase miss latencies in multi-cores with much faster
on-chip cache-to-cache transfer latencies than external mem-
ory latencies. Subspace snooping selectively sends requests
only to the stable sharers of the requested page, and thus
does not miss the opportunities for fast cache-to-cache trans-
fers for clean data. Another difference between CGCT and
subspace snooping is that CGCT needs to look up the region
tags and change their states for incoming snoop requests.
However, subspace snooping updates subspaces very infre-
quently.

Compared both to RegionScount and CGCT, the base
subspace snooping architecture does not require extra hard-
ware tables except for the additional information embedded

0

20

40

60

80

100

C
oh

er
en

ce
 T

ra
ns

ac
tio

ns
 (

%
)

16 sharers
8-15 sharers
4-7 sharers
2-3 sharers
private (1 sharer)

64B 8KB

ba
rn

es

ch
ol

ek
sy fft

fm
m lu

oc
ea

n

bl
ac

ks
ch

ol
es

ca
nn

ea
l

de
du

p

fe
rr

et

flu
id

an
im

at
e

sw
ap

tio
ns

vi
ps

S
P

E
C

jb
b

A
pa

ch
e

A
ve

ra
ge

Figure 1: Sharing distributions of coherence transactions: 64B and 8KB granularity (16 cores)

in the TLB. We also explore a possible optimization for sub-
space snooping by allowing subspace shrinking, which uses
counting bloom filters. However, the size of the per-node
bloom filter is small compared to the region tables.

Unlike the aforementioned source-level filtering techniques,
In-Network Coherence Filtering (INCF) filters out snoop re-
quests at the routers [2]. Each router maintains a table for
region-based sharing states, and does not forward a snoop
request to a port, if the snoop request does not need to be
delivered to the nodes reachable from the port. The mecha-
nism requires a table for each router and the router pipeline
must access the table. Furthermore, the routing algorithm
must be deterministic and does not allow flexible adaptive
routing. Unlike INCF, subspace snooping does not require
any modification to underlying networks. Flexible snooping
proposed by Strauss et al, provides adaptive forwarding and
filtering of snoop requests, either for high performance or
energy conservation [28].

Jetty filters out unnecessary snoops at the destination
node, by maintaining a filter in each node [24]. Since the
filter resides at the destination node, snoop requests must
still be broadcast to all the nodes, consuming network band-
width and power. It saves only the power consumption to
look up snoop tags. RegionTracker proposes a mechanism to
track cache states at both fine and coarse grain granularity
with a two-level dual-grain tracking mechanism [31].

Ekman et al embedded sharing vectors in the TLB with
virtually addressed caches [13]. The page-level sharing vec-
tor in the TLB is used to filter out unnecessary snoop re-
quests. Subspace snooping keeps the subspace information
in the TLB, but the original subspace information is stored
in the page table. Also, subspace snooping does not track
the sharing vector for every coherence transactions, which
may require a constant update of the sharing vector in the
TLB.

2.2 Other Related Work
Subspace snooping is extensively influenced by the prior

work to improve coherence bandwidth, to support snooping
on un-ordered networks, and to use OS support for managing
on-chip caches.

Improving Coherence Bandwidth: Subspace snoop-
ing contains elements of both traditional snooping and di-
rectory protocols to improve coherence bandwidth. The
bandwidth adaptive snooping has combined the benefits of
snooping and directories adaptively in one system [21]. Mul-
ticast snooping [7] and destination set prediction [18] use

prediction techniques which send coherence request only to
potential sharers. Thus, these models must support a fall-
back mechanism to recover when a miss prediction occurs,
whereas subspace snooping does not need it.

Coherence Ordering on Un-ordered Network: There
are several recent studies to embed coherence capabilities
into on-chip networks. Token coherence replaces the con-
ventional cache states with tokens to remove synchronous
updates of cache states [19, 26]. In-network cache coherence
proposes the embedding of cache coherence protocols within
the network [12]. The protocols send a request to the nodes
in a virtual tree that consists of the sharers. Virtual tree
coherence supports virtually ordered tree interconnects on
unordered networks, and multicasts to the sharers tracked
by region [14].

OS-based Cache Management: There are recent stud-
ies to use OS supports to manage on-chip cache placements.
Fensch and Cintra proposed an OS-based approach for cache
coherence in tiled CMPs by maintaining a single copy for
each address [15]. Reactive-NUCA classifies data into pri-
vate data, instruction, and shared data. Blocks are placed
to a location that can improve performance by the classifi-
cation [16]. In this approach, they record classification in-
formation in page tables.

3. FINDING SUBSPACES
Subspace snooping uses stable subspaces found in the shar-

ing behaviors of parallel applications. In this section, we
present the characteristics of sharing patterns in our bench-
mark applications. We first present the distributions of
sharers at page granularity, and show that the majority of
page accesses occur for partially shared pages. Secondly, we
present the sharing pattern changes during the execution of
applications. We use the Simics full-system simulator [17]
with a cache model in the GEMS toolset [20]. The target
system has 16 cores with a 512KB private L2 cache per core.
We use parallel applications from SPLASH-2 [30] and PAR-
SEC [6]. We also evaluate two server applications, SPECjbb
and Apache. The details of the benchmark applications and
system configuration are shown in Table 2 and Table 3.

Subspaces may contain more cores than the precise shar-
ers for two reasons: i) spatial and ii) temporal aliasing. Spa-
tial aliasing occurs, since subspaces are maintained at page
granularity. The chance of false sharing with page granu-
larity is higher than that with a cacheline unit. Secondly,
temporal aliasing occurs, since subspace snooping does not
update sharers for each coherence transaction as directory

0

20

40

60

80

100

C
oh

er
en

ce
 T

ra
ns

ac
tio

ns
 (

%
)

LU
0

20

40

60

80

100

C
oh

er
en

ce
 T

ra
ns

ac
tio

ns
 (

%
)

OCEAN
0

20

40

60

80

100

C
oh

er
en

ce
 T

ra
ns

ac
tio

ns
 (

%
)

BLACKSCHOLES

0

20

40

60

80

100

C
oh

er
en

ce
 T

ra
ns

ac
tio

ns
 (

%
)

FLUIDANIMATE
0

20

40

60

80

100

C
oh

er
en

ce
 T

ra
ns

ac
tio

ns
 (

%
)

SWPATIONS
0

20

40

60

80

100

C
oh

er
en

ce
 T

ra
ns

ac
tio

ns
 (

%
)

SPECjbb

Figure 2: Cumulative sharing distributions for different time intervals (8KB granularity)

protocols do. Therefore, subspaces may have sharing cores
which have accessed a page a while ago, but no longer have
any cachelines of the page in their caches.

3.1 Sharing Behaviors at Page Granularity
Subspace snooping tracks sharers at page granularity and

sends snoop requests only to the sharers marked in the page
table. To reduce snoop requests, the number of sharing
processors for each page must be small. Figure 1 presents
sharing distributions for all coherence transactions, which
include read, read-exclusive, and upgrade (from shared to
modified) transactions in MOESI protocols. For each page,
we track sharers cumulatively from the beginning to the end
of simulation. In the figure, the number of sharers for a co-
herence transaction is the number of sharers collected for the
accessed page until the transaction occurs. Sharers tracked
in each page are never removed during execution. For each
application, the figure shows two distributions, the first one
with 64B granularity and the second one with 8KB granular-
ity. The distributions of sharers are divided into 1 (private),
2-3, 4-7, 8-15, and 16 processor partitions.

As shown in the Figure 1, applications have a significant
potential to reduce snoops, even at page granularity. On
average, 5.7% of coherence requests are for private pages,
7.0% for 2-3 sharers, 17.8% for 4-7 sharers, 17.3% for 8-15
sharers, and 52.2% for 16 sharers. Canneal and swaptions

in PARSEC show the worst sharing behaviors, with almost
the entire coherence transactions sent to fully shared pages.
A commercial workload, SPECjbb and Apache access fully
shared pages at higher rates than the average rate.

The figure shows that, for the snoop requests from the L2
caches, 42% of coherence requests occur on partially shared
pages with 2-15 sharers. This result indicates dividing the
address space only to private and shared spaces, does not
provide an effective snoop reduction. With such dichotomy,
94% of accesses occur on shared pages, and snoop requests
must be broadcast.

Tracking sharers at page granularity causes spatial alias-
ing for some applications. The coherence transactions on
fully shared pages in barnes increase from 17.3% (block
granularity) to 90.4% (page granularity). Ferret also shows
a significant increase of fully shared pages from 64B to 8KB
granularity (from 7.6% to 59.5%). The rest of the applica-
tions show a modest increase of sharers with page granular-

ity. Compiler or programming optimization to reduce false
sharing at page granularity may be able to reduce the spa-
tial aliasing, but the techniques are beyond the scope of this
paper.

3.2 Sharing Behaviors at Different Intervals
Sharing distributions of applications may change over the

program execution. Figure 2 shows cumulative sharing dis-
tributions at different time-intervals. We show six repre-
sentative patterns in the figure. The total execution time
of each application is divided into ten equal time periods.
The graphs show sharing distributions, similar to Figure 1,
during different time-intervals. In this figure, each bar shows
the distributions of accesses to 1, 2-3, 4-7, 8-15, and 16 shar-
ers (subspaces) for a time-interval. Sharers are not reset for
each time interval. Instead, sharers are accumulated for each
page cumulatively from the beginning of each application
run.

For lu, fully shared page ratio does not increase as the ap-
plication progresses, but partially shared page ratios (8-15
sharers) monotonically increase. In the later part of the pro-
gram execution, high sharing (8-15 sharers) accesses domi-
nate coherence transactions. Ocean shows a relatively sta-
ble pattern. Swaptions shows the ratio of accesses to fully
shared pages is uniformly high from the beginning period.
SPECjbb shows a stable access pattern with a large portion
of 8-15 sharers till the sixth period, but fully shared accesses
dominate after then.

There are some applications with stable patterns, either
with a high ratio of fully sharing patterns (swaptions) or
with a significant ratio of partially shared patterns (ocean,
fluidanimate). However, other applications tend to in-
crease the accesses to high sharing pages in the later part of
program execution. It occurs for two reasons: Firstly, sub-
spaces become larger for frequently accessed pages as more
sharers are added over the runtime, due both to the sharing
behavior and thread migration. Secondly, the program ac-
cesses highly shared pages more often in the later part of the
execution than the early part. For the first reason, it may be
necessary to adjust subspaces as the active sharers change
during runtime. In Section 4.3, we will propose a shrinking
mechanism to remove inactive sharers from subspaces.

P1 TLB

0xd200 0x200 S
...

0xd300 0x300 P

VPN PPN P/S

P1

P0

P0 TLB

0xd200 0x200 S

...

VPN PPN P/S

0xd100 0x100 P

Page 0x300

Page 0x200

Page 0x100

Page Table

Shared
PPN=0x200
VPN=0xd200

Private P1
PPN=0x300
VPN=0xd300

Private P0
PPN=0x100
VPN=0xd100

Physical Memory

PPN: Physical Page Number

VPN: Virtual Page Number

Figure 3: Bi-space snooping using a page table and
TLBs

4. SUBSPACE SNOOPING ARCHITECTURE
Subspace snooping maintains potential sharer lists in page

table entries and TLBs. To describe the sharer tracking
mechanism of subspace snooping, we first present bi-space
snooping, which divides subspaces only to two spaces, pri-
vate and shared. Bi-space snooping is similar to the prior
coarse-grained source-level filtering, except for the use of OS
page tables. In Section 4.2, we introduce a general subspace
snooping protocol to track all the possible combinations of
sharers.

As a program runs, nodes which have accessed a page,
can be accumulated to the subspace of the page, and some
nodes in the subspace may no longer use the page. In Sec-
tion 4.3, to avoid the monotonic accumulation of sharers
on each page, we propose an adaptive mechanism to shrink
subspaces safely.

4.1 Bi-space Snooping Architecture
As a simplified subspace snooping, we introduce bi-space

snooping that records the private or shared states of pages
in page table entries. Before processors send coherence re-
quests, the processors must look up the TLBs for address
translation. With bi-space snooping, the processors can find
whether pages are shared or private during address transla-
tion. For private pages, snoop requests do not need to be
sent to the other processors. In conventional snooping pro-
tocols, if a cache miss occurs, the requesting processor does
not know whether the cacheline is shared or private until
all the other processors are snooped. Therefore, even if a
page is private (no other processors have ever accessed the
page), a processor must broadcast requests and all the other
processors must snoop to verify whether the cacheline is in
their caches.

Using page tables and address translation mechanisms, bi-
space snooping classifies pages into private and shared pages
to choose a different space. If a page has been accessed by
only one processor, the page is set as a private page for
the processor. If another processor attempts to access the
page, the page state is updated to a shared state. For pri-
vate pages, bi-space snooping does not broadcast requests,
reducing unnecessary snoops.

Figure 3 shows the overview of a bi-space snooping proto-
col using a page table. To classify pages, bi-space snooping
adds an extra bit in page table entries for representing a

Snoop Request to
P2 and P9

P4

P8

P12

P1

P5

P13

P6

P10

P14

P3

P7

P11

P15

VPN PPN Subspace

...
0xd100 0x100 P0,P2,P9

...

P0 P2

P9

TLB

Router

Figure 4: Subspace snooping overview: sending a
snoop request to a subspace

private or shared state. TLB entries must also have the
extra state bit. In addition to the state bit, a page table en-
try maintains an owner identifier for private pages, and the
owner identifier of a page is set when a processor accesses
the page table entry for the first time to handle a TLB miss.
Bi-space snooping updates the page sharing state in a page
table entry when a TLB miss handler accesses the page table
entry to fill TLBs. If a page is a private page already owned
by another processor, the sharing state of the page should
be changed to a shared state.

When a page state changes from private to shared, a criti-
cal constraint for correctness is that the original owner must
also be notified about the change, before a new sharer ac-
cesses the memory location. To do that, the TLB miss han-
dler must send a TLB update request to the current owner
to update the status of its TLB entry to shared. To avoid
any race condition, the TLB miss handler must not com-
plete the TLB fill until the TLB entry of the current owner
is completely updated. To ensure the correctness, the TLB
miss handling of the newly joining core is delayed until the
acknowledgment from the current owner is received.

4.2 Fine-grained Subspace Snooping
Subspace snooping extends bi-space snooping to support

fine-grained subspaces for each page. Figure 4 presents the
overview of subspace snooping. The sharing states in the
TLBs and page table are extended to sharing vectors to
record the sharers of each page. For each coherence transac-
tion, a requesting processor finds a set of sharers (subspace)
of the address from the TLBs. Snoop requests are delivered
only to the processors in the subspace. In Figure 4, the sub-
space of page 0x100 is {P0, P2, P9}, and P0 sends snoop
requests only to P2 and P9.

To maintain the list of sharers for each page, page table
entries and TLBs are extended to hold a bitmap, sharing
vector for all the processors, with each bit corresponding
to each processor. For every coherence transaction, the re-
questing processor looks up the TLBs during address trans-
lation, and sends requests to only the processors marked in
the sharing vector.

Subspace snooping uses a similar mechanism to bi-space
snooping to keep the TLBs up-to-date with the latest sub-
space information. Whenever a new processor is added to a
subspace, the sharing vector of the page table entry and the
TLB entries of processors in the current subspace must be
updated. To avoid any race condition, the update must be
completed, before the new processor is permitted to access
the page. In bi-space snooping, sharing state updates hap-
pen only at transitions from private to shared. However, in

P0 TLB

L2 $
Bloom Filter

Counter == 0 ?
(3) Remove P0

Page Table

PPN=0x100
P0, P1, P4

(4) Update TLBs of P1 and P4

(2) Invalidate VPN=0xd100

(Page 0xd100 not in cache?)

(1) Evict Cacheline (in page 0xd100)

VPN=0xd100

Figure 5: Shrinking subspaces: removing P0 for page 0xd100

subspace snooping, a subspace is updated whenever a new
processor is added to the subspace.

Generalized subspace snooping may incur more storage
and timing overheads than bi-space snooping. Firstly, sub-
space snooping must update the subspace of a page more
frequently than bi-space snooping, since adding each new
sharer must update the subspace. In the worst case, one
page table entry can be updated N times when N is the
number of processors. Such updates delay the TLB miss
handling of a newly joining sharer. Secondly, with subspace
snooping, the page table size may be increased in the main
memory, and the TLBs require more space for sharing vec-
tors than that with bi-space snooping. We will discuss the
costs of supporting subspace snooping in Section 5.1.

4.3 Shrinking Subspaces on Phase Changes
In the base subspace snooping, sharers are added to sub-

spaces during the run-time of a program, but never removed
from subspaces. However, as a program runs, the sharing
patterns may change, and the base cumulative subspaces
may include obsolete sharers, which no longer access the
pages. To adapt to sharing phase changes, subspace snoop-
ing supports a mechanism to remove sharers from subspaces,
called subspace shrinking.

Shrinking a subspace can be done in the background. To
shrink a subspace, a processor, which attempts to remove
itself from the subspace, updates the sharing vector in the
page table entry, and sends subspace shrink requests to the
current sharers to update their TLBs. However, updating
the TLBs of other processors can be delayed, without caus-
ing any correctness problem. As long as the sharing vectors
cached in the TLBs are the supersets of the subspace in the
page table, subspace snooping works correctly.

In this section, we propose a subspace shrinking mech-
anism, which can gradually re-adjust subspaces, if proces-
sors stop accessing certain pages. The shrinking mechanism
tracks the number of blocks of a page residing in the caches
of each processor. When a page is completely evicted from
a processor, the processor is removed from the subspace of
the page.

When subspaces are shrunken, one critical invariant must
be maintained for correctness:

• Subspace Invariant: If a processor contains a cacheline
in its caches or a page in its TLBs, the processor must
be in the subspace of the page including the cacheline
or the TLB entry.

To trigger a subspace shrink, the mechanism must know
when the last cacheline of a page is evicted from the local
caches. When no cacheline of a page exists in the caches,
a processor can remove itself safely without violating the

subspace invariant. The corresponding TLB entry must also
be invalidated. Supporting the mechanism requires a fast
page-level cache residence test function to check whether a
page is cached or not. For the cache residence test, we use
a counting bloom filter technique [8]. Each processor has a
bloom filter indexed by a hash of a physical page number
(PPN). The bloom filter entry has a counter and a virtual
page number (VPN). Whenever a cacheline is inserted to
the local caches, the counter in the corresponding entry is
increased by one. When a cacheline is evicted or invalidated,
the counter is decreased by one. A problem with the bloom
filter is the saturation of counters, which should be a rare
event. If the counter of an entry is saturated, we assume
that all PPNs mapped to the entry have cachelines in the
local caches. Infrequently, the OS can reset the bloom filter,
when the entire local caches are flushed. If an aliasing, with
two pages mapped to the same entry, occurs, only one of the
pages can be shrunken, due to one VPN per entry.

Figure 5 describes the shrinking processes. A bloom filter
is used to trigger shrink events. When a counter is decreased
and becomes zero, it is guaranteed that pages mapped to the
entry no longer exist in the caches. Using the stored VPN,
the local TLB is invalidated and the page table is updated.

Shrinking subspaces too early can reduce performance by
increasing the chance of subspace updates. For example,
soon after a processor removed itself from the subspace of a
page, the processor can access the same page again, adding
itself to the subspace. In Section 5.1, we will present how
many TLB misses cause subspace updates, and the possible
increase of subspace updates by shrinking subspaces.

5. IMPLEMENTATION ISSUES
In this section, we discuss implementation issues for sup-

porting subspace snooping. Firstly, we present how to main-
tain subspaces in page tables correctly, and how often sub-
space updates occur in our benchmark applications to show
their performance impact. Secondly, we discuss how sub-
space snooping can be integrated to coherence mechanisms
and networks. Finally, we discuss several other implemen-
tation issues, including DMA, HW prefetching, and page
aliasing.

5.1 Maintaining Subspaces
If a TLB miss occurs and the processor is not in the sub-

space of the missing page, the processor must be added to
the subspace before accessing the page. The TLB miss han-
dling is not completed until the subspace change is updated
to the page table and the TLBs of the processors in the
current subspace. Hardavellas et al. also stores private
or shared status of pages in page tables for cache place-
ments [16]. In their work, once the second core accesses a

private page, the status in the page table entry changes to
shared. The operation is similar to that of bi-space snoop-
ing.

5.1.1 Available space in page table entries
To record subspaces in page tables, a page table entry

must have enough free space. As discussed in Awasthi et
al [4], UltraSPARC-III has 64-bit address space, but uses
only 44 bits for virtual addresses and 41 bits for physical
addresses. The remaining 23 bits are unused and those bits
can be used for storing subspace information. If the num-
ber of nodes exceeds 23, a possible solution is to cluster the
nodes. 32-processor machine can use 16 bits, with cluster-
ing two processors to a cluster. Sharing vectors are set for
cluster units, not for individual processors. If a requesting
processor sends snoop requests to a cluster, all processors in
the cluster must snoop the request.

5.1.2 Making TLBs consistent for subspace changes
In conventional shared memory multiprocessors, a page

table entry is updated when the virtual-to-physical map-
ping is changed or the permission status is changed. In
subspace snooping, changing subspaces also requires updat-
ing the page table. Updating a page table entry requires a
mechanism to keep TLBs consistent [29]. Once the page ta-
ble entry is updated, the existing copies in the other TLBs
must be invalidated or updated. There are two common
ways to keep TLBs consistent. A simple and generic way
is using inter-processor interrupts (IPI) to force other pro-
cessors to execute local TLB invalidation instructions. A
more light-weight mechanism is to broadcast TLB invali-
dation messages. A TLB invalidation instruction not only
invalidates the local TLB, but sends TLB invalidation sig-
nals to the other processors. Sun XD-Bus [27], PowerPC [1]
and Intel’s Itanium processors [5] support TLB coherence
with such a remote TLB invalidation mechanism, which is
much less costly than IPI.

Invoking IPIs is costly for subspace updates, as subspace
updates may occur more frequently than page table up-
dates occur in the conventional multiprocessors. To reduce
the overheads of maintaining TLB consistency for subspace
changes, subspace snooping uses a similar mechanism to the
remote TLB invalidation mechanism. When a subspace is
updated for a page, the update requests for the TLBs are
multi-cast to the processors in the current subspace. The
receiving processors must send acknowledgments to the re-
questing processor.

5.1.3 Updating page table entries
For a normal TLB miss, the page table entry is fetched

either from caches or the external memory. If a subspace
addition is necessary, an atomic read-modify-write is per-
formed to the entry which is already in the local cache by
the TLB fill. For SW-based TLB fills, the TLB fill handler
will update the page table entry. For HW-based TLB fills,
the TLB fill controller must be augmented for the support.

Unlike the page table updates to change address mapping
or permission bits, adding a processor to a page table entry
does not result in a significant complexity for avoiding a race
condition. Each processor changes only its corresponding bit
in the sharing vector, but it never modifies the other bits in
the page table entry. However, it needs an atomic read-
modify-write operation to set the bit safely without data

base shrinking
Workloads add add remove

barnes 0.002 0.002 0.001
cholesky 0.006 0.007 0.003
fft 0.039 0.053 0.031
fmm 0.002 0.002 0.001
lu 0.002 0.002 0.001
ocean 0.004 0.012 0.008
blackscholes 0.007 0.007 0.000
canneal 0.053 0.174 0.127
dedup 0.014 0.016 0.002
ferret 0.004 0.005 0.003
fluidanimate 0.010 0.012 0.003
swpations 0.001 0.001 0.000
vips 0.004 0.009 0.007
SPECjbb 0.091 0.113 0.040
apache 0.103 0.189 0.097

Table 1: Subspace updates per 1000 instructions

races. Furthermore, adding a processor to a subspace is a
relatively safe operation which does not cause any conflict
with other operations on the page table entries. For exam-
ple, adding a wrong processor to a subspace will only reduce
filtering performance, since an extra unnecessary snooping
message will be sent to the processor.

After the page table entry is updated, the requesting pro-
cessor broadcasts subspace update messages to all the pro-
cessors in the current subspace. The requesting processor
can access the page only after it receives the acknowledg-
ments from all the other processors. Compared to a nor-
mal TLB fill process, a subspace add operation requires two
extra steps: i) firstly, it needs the execution of an atomic
read-modify-write to set the corresponding bit in the page
table entry. The operation may require a shared-to-modified
state change for the cache block of the page table entry. The
cacheline for the entry will be most likely in the local caches,
since the TLB fill operation brings it into the caches. ii) The
second step is to send TLB update messages to the other
processors in the subspace, and wait for the acknowledg-
ments. The latencies of each step are close to the latencies
of broadcasting cacheline invalidation requests and receiving
the acknowledgments.

Shrinking subspace can increase subspace updates, as it
can remove a processor prematurely from a subspace, incur-
ring subspace additions later. Unlike adding a new processor
to a subspace, removing a processor from a subspace during
shrinking is not on the critical path of TLB or cache miss
handling. Shrinking can be processed on the background, as
the delayed shrinking only increases unnecessary snoops.

5.1.4 Subspace update rates in applications
Table 1 presents the number of subspace updates per thou-

sand instructions. The second column shows the number of
subspace updates to add a new processor with the base sub-
space protocol. The base subspace snooping has a minor
number of subspace updates. FFT has 0.039 updates per 1k
instructions, and canneal, SPECjbb, and apache have 0.053,
0.091, 0.103 updates respectively. The rest of the applica-
tions have less than 0.01 updates per 1k instructions. The
result shows that subspace updates are very infrequent. The
third and fourth columns of Table 1 show the number of up-
dates for adding and removing a processor with the shrinking
support. An observation is that with shrinking, compared

Parameter Value

Processors 16/32 in-order SPARC core
L1 I/D cache 32KB, 4-way, 64B block, 2 cycle access latency
L2 cache 512KB, 8-way, 64B block, 12 cycle access latency
I-TLB L1 TLB: 16-entry, fully assoc. L2 TLB: 128-entry, 2-way
D-TLB L1 TLB: 16-entry, fully assoc. L2 TLB: 2 x 512-entry, 2-way
Main memory 4GB memory, 8KB pages
Bloom filter size 1024 entries, 7 bit counter
Coherence Token Coherence
On-chip Network 4x4, 4x8 2D mesh with 16B links, 4 cycle router pipeline

Table 2: Simulated system configurations

SPLASH-2 Dataset PARSEC Dataset Servers Dataset

barnes 65,536 particles blackscholes 16,384 options SPECjbb2k 16 or 32 warehouses
cholesky tk29.O canneal 200,000 elements Apache 160 simulated users
fft 4,194,304 points dedup 31MB data
fmm 65,536 particles ferret 64 queries, 13,787 images
lu 1024 x 1024 matrix fluidanimate 5 frames, 100,000 particles
ocean 514 x 514 grid swaptions 32 swpations, 10,000 simulations

vips 1 image, 2,336 x 2,336 pixels

Table 3: Application input data and parameters

to the base subspace, the subspace add rates are increased
almost by the same amount as the subspace shrink rates. It
means most of the shrunken pages are accessed again later
by the removed processors. The benchmark applications do
not have many coherence requests on the pages with obsolete
sharers in the subspace, making the shrinking mechanism in-
effective.

5.2 Integration to Coherence Protocols
Subspace snooping can be integrated to any type of snoop-

based coherence mechanisms, independent from underlying
network topologies and from coherence mechanisms. Sub-
space snooping always maintains the superset of precise shar-
ers in a subspace. This superset property allows subspace
snooping to be used with any snoop-based coherence proto-
cols without restriction.

Traditional snoop-based multiprocessors use a dedicated
request bus to broadcast snoop requests. The broadcast bus
can use various implementations, including physical buses,
fat trees, or rings [10, 22]. When a dedicated broadcast bus
is used for snoop requests, subspace snooping must send
requests to all nodes through the bus anyway, with sharer
vectors embedded in the requests. With this kind of fixed
broadcast buses, subspace snooping reduces snoop tag lookups,
although the network traffic cannot be reduced. However,
subspace snooping can reduce the network traffic, if the
broadcast network also supports multi-cast transmissions,
as proposed by Bilir et al [7].

Subspace snooping can be applied to snoop-based proto-
cols using packet-switched networks. In protocols like AMD
HyperTransport [11], a snoop request is sent to the home
node as an ordering point, and the home node broadcasts
snoop requests. With subspace snooping, the home node,
instead of broadcasting, can send requests only to the pro-
cessors in the subspace. Other designs provide snoop or-
dering without the indirection through home nodes. In-
Network Snoop Ordering provides snooping ordering on un-
ordered networks by maintaining logical orders among co-
herence messages at routers [12]. Token Coherence elimi-
nates the need for ordering by using tokens and persistent
requests [19].

5.3 Other Implementation Issues
Subspace snooping relies on address translation to find

subspaces. In this section, we discuss uncommon cases, by-
passing of address translation and aliasing.

Handling DMAs: Direct Memory Access (DMA) by IO
devices uses physical addresses without address translation
by TLBs. Therefore, the IO devices cannot know the sub-
space of a page. However, many IO DMAs occur only on un-
cacheable memory areas, which is not made cache-coherent
by hardware anyway. For the rest of DMA accesses on coher-
ent addresses, DMAs can access memory as if all pages are
fully shared. Delivering extra unnecessary snoop requests
does not break the correctness of subspace snooping, and
the DMA accesses are not frequent compared to other co-
herence transactions.

HW prefetchers: Hardware prefetchers are often trained
by physical address streams, and they issue prefetch requests
in physical addresses without address translation. Although
it is always possible to send prefetch requests as if they are
for fully shared pages, it can decrease the effectiveness of
subspace snooping, since prefetch requests are much more
frequent than DMA requests. There are two solutions to
this issue: 1) use virtual address-based prefetchers with ad-
dress translation, 2) add a map from a physical page number
(PPN) to the sharing states for prefetchers.

Page sharing across address spaces (page aliasing):
If the virtual pages of different address spaces are mapped to
the same physical page, subspace snooping may not track the
sharers correctly. A solution for correctness is to simply force
broadcast snoops for the aliased pages, overriding subspace
snooping. As the OS is always aware of such sharing and
able to mark it on the page tables, subspace snooping does
not cause any correctness problem.

6. EXPERIMENTAL RESULTS
To evaluate subspace snooping, we use Virtutech Sim-

ics [17], a full-system simulator, with a timing model from
the GEMS toolset [20]. The GEMS memory model is aug-
mented with the GARNET interconnection model [25]. Our
parallel workloads consist of applications from SPLASH-

0

20

40

60

80

100

S
no

op
 R

ed
uc

tio
n

(%
)

bi-space (8KB) bi-space (64B) subspace shrinking ideal

ba
rn

es

ch
ol

es
ky fft

fm
m lu

oc
ea

n

bl
ac

ks
ch

ol
es

ca
nn

ea
l

de
du

p

fe
rr

et

flu
id

an
im

at
e

sw
ap

tio
ns

vi
ps

S
P

E
C

jb
b

A
pa

ch
e

A
ve

ra
ge

Figure 6: Snoop reduction with Token Coherence: 16 cores

2 [30] and PARSEC [6]. We also evaluate two commer-
cial workloads, SPECjbb2000 and Apache. Apache is a web
server workload with the Apache HTTP server, serving only
static web pages. The details of workload parameters are
shown in Table 3.

The simulated system is a 16-core CMP and each core is
an in-order SPARC processor with a private L2. Table 2
shows the system configurations of the simulated system.
We model 4x4 2D-mesh interconnection networks, with di-
mension ordered routing. We integrate subspace snooping
to Token Coherence (TokenB), including the impact of sup-
porting TLB coherence for subspace changes. Token coher-
ence uses persistent requests as a fallback mechanism, if nor-
mal transactions exceed the time-out limit. We do not apply
subspace snooping to the persistent requests to simplify our
integration with TokenB.

6.1 Snoop Reduction by Subspace Snooping
In this section, we present the snoop reduction by various

subspace snooping schemes. In a snoop-based coherence pro-
tocol, every coherence transactions generate snoop requests
to all the nodes, and each node must look up their cache tags
and send a response. In this section, we measure how many
snoops occurring in each node can be reduced by subspace
snooping. The dynamic power consumption of snoop tag
lookups is proportional to the snoop rate. It has been shown
that the power consumption of snoop tag lookups amounts
to a significant portion of L2 dynamic power consumption,
and as the number of cores increases, the power consumption
by snooping will increase [24]. Subspace snooping reduces
the snoop tag lookups, allowing the design of power-efficient
many-cores.

Figure 6 shows the snoop reduction rates of four configu-
rations: bi-space (8KB), bi-space (64B), subspace snooping
without shrinking, and subspace snooping with shrinking.
Bi-space (64B) is presented to show the result of ideal fil-
tering using only two states (private and shared), without
the negative effect of spatial aliasing. The rest of results use
8KB page granularity. The figure shows the reduction of
total number of snoops occurring at all the cores, compared
to the baseline TokenB protocol, which always broadcasts
snoop requests. The last bar of each application shows the
snoop reduction with an ideal protocol. In the ideal pro-
tocol, a requesting core always knows exactly which cores
have a copy of the cache block requested for the coherence
transaction, which is similar to a directory-based protocol.
The requesting core can send requests only to the precise
sharers.

Bi-space snooping has modest snoop reductions in several
applications. FFT has the highest reduction with bi-space

0

20

40

60

80

100

N
or

m
. N

et
w

or
k

T
ra

ffi
c

(%
)

Subspace Cost
Persistent Req.
Data
Coherence

TokenB
Subspace

Shrinking

ba
rn

es

ch
ol

es
ky fft

fm
m lu

oc
ea

n

bl
ac

ks
ch

ol
es

ca
nn

ea
l

de
du

p

fe
rr

et

flu
id

an
im

at
e

sw
ap

tio
ns

vi
ps

S
P

E
C

jb
b

A
pa

ch
e

A
ve

ra
ge

Figure 7: Normalized network traffic: 16 cores

0

20

40

60

80

100

N
or

m
al

iz
ed

 R
un

tim
e

(%
) Token Coherence Subspace Shrinking

ba
rn

es

ch
ol

es
ky fft

fm
m lu

oc
ea

n

bl
ac

ks
ch

ol
es

ca
nn

ea
l

de
du

p

fe
rr

et

flu
id

an
im

at
e

sw
ap

tio
ns

vi
ps

S
P

E
C

jb
b

A
pa

ch
e

A
ve

ra
ge

Figure 8: Normalized execution times: 16 cores

(50%). Cholesky, fmm, lu, and ocean have 21-29% snoop re-
ductions by removing snoop requests for private pages. How-
ever, the rest of the applications have small reduction rates
of up to 15% with bi-space snooping. Although the memory
overhead of bi-space snooping is very small, its benefit is
modest or minor, and fine-grained subspaces are necessary
to further reduce snoops. Bi-space (64B), with average 22%
reduction on average, is slightly better than bi-space (8KB)
without spatial aliasing. However, the effect of spatial alias-
ing is not significant for bi-space snooping.

Using fine-grained subspaces, which can discern each shar-
ing node, improves bi-space significantly. On average, the
base subspace snooping without shrinking reduces snoops
by 40%, reducing 25% more snoops compared to the 14%
reduction of bi-space. The snoop reduction rates for scien-
tific workloads are generally higher than those of commercial
workloads, except for canneal and swaptions. FFT, lu, and
ocean are close to the ideal since the sharing patterns of
these workloads have most of the coherence transactions on
1-7 sharer pages.

0

20

40

60

80

100

S
no

op
 R

ed
uc

tio
n

(%
)

bi-space cluster-subspace full-subspace ideal

ba
rn

es

ch
ol

es
ky fft lu

oc
ea

n

bl
ac

ks
ch

ol
es

ca
nn

ea
l

flu
id

an
im

at
e

sw
ap

tio
ns

S
P

E
C

jb
b

A
pa

ch
e

A
ve

ra
ge

Figure 9: Snoop reduction with Token Coherence: 32 cores

Workloads not pinned pinned
blackscholes 43.1% 40.52%
canneal 1.3% 1.5%
fluidanimate 42.2% 82.0%
swpations 0.8% 0.6

Table 4: Snoop reduction by pinning threads to
physical cores

The snoop reduction rates with the PARSEC applications
are lower than those with the SPLASH-2 applications. Two
applications with the worst reduction rates are canneal and
swaptions. Canneal has very fine-grained sharing patterns,
where threads access small data items in a random pattern.
In such a fine-grained random sharing pattern, subspace
snooping cannot form a stable subspace with small num-
bers of sharers. However, the ideal protocol can reduce the
snoops by 92% for canneal. Canneal shows the inability of
subspace snooping to track precise sharers, if many proces-
sors access shared pages frequently, but only a small subset
of the processors have copies of the pages in their caches.
Swaptions also shows that most of the coherence trans-

actions occur on the pages shared by all the processors,
as shown in Figure 1. However, unlike canneal, even the
ideal protocol cannot reduce snoops effectively. Swaptions

has little communication among threads, but the majority
of misses occur for instruction fetching, as the instruction
working set does not fit in the private L2. Since the mem-
ory pages for instructions are shared by all the processors,
when a cache miss occurs for a core, most likely other cores
have the cache-line in their caches. However, for such read-
only data, the coherence protocol can be optimized not to
broadcast requests. Such optimization will be our future
work.

Another factor to reduce the effectiveness of subspace
snooping is unnecessary thread migrations. In Figure 6,
threads are not bound to physical cores for PARSEC. Among
the PARSEC applications, we picked four applications with
static thread allocation, and pinned threads to cores. The
performance actually improves slightly by binding threads to
cores. For the four applications, three applications, blacksc-
holes, canneal, and swaptions, do not improve snoop re-
ductions. However, fluidanimate improves the reduction
rate from 42% to 82% by pinning threads to cores. The
results show that if the operating system scheduler limits
thread migrations, the effectiveness of subspace snooping
can be improved significantly for certain applications.

The fourth bar of Figure 6 shows the snoop reduction rates
by the subspace shrinking mechanism. The results show the
shrinking mechanism can increase the reduction rate mod-

estly by 4% compared to the baseline subspace snooping.
The benefit of shrinking is small in the benchmarks we used.
As discussed in Section 5.1.4, in the benchmark applica-
tions, memory accesses to the pages with obsolete sharers
do not occur frequently enough to make shrinking effective.
One of the reasons for such small benefit of shrinking is the
relatively short execution cycles of the benchmark applica-
tions. For long-running applications, we believe the shrink-
ing mechanism will be necessary to mitigate the effect of
sharing pattern changes and thread migrations.

6.2 Network Traffic and Performance
In this section, we present the reduction of network traffic

by filtering snoop requests on a 4x4 mesh network. We also
show the performance improvement by the traffic reduction.

Network traffic: By reducing snoop requests at request-
ing cores, subspace snooping reduces the network traffic in
token coherence. Figure 7 shows the network traffic with
subspace snooping normalized to that with the base token
coherence. The three bars for each application show the net-
work traffic with TokenB, subspace, and shrinking, respec-
tively. For each bar, the traffic is divided into coherence,
data, persistent and subspace update requests. For TokenB,
72% of the total traffic is for coherence requests and ac-
knowelegements, and 28% is for data traffic. The traffic by
persistent requests is negligible. Subspace snooping reduces
only the coherence traffic.

With subspace snooping, FFT, lu, and ocean have about
50% less network traffic than TokenB. In canneal and swap-

tions, network traffic does not decrease, as requests are
mostly to fully shared pages. The average network traffic is
reduced by 25% without shrinking. Subspace shrinking re-
duces traffic only modestly. Except for blackscholes, most
of workloads have negligible traffic overheads for subspace
update messages, since subspaces are updated infrequently.
However, even in blackscholes, the subspace update mes-
sages increase the traffic by 2%.

The reduction of network traffic leads to both the power
reduction and performance improvement. The power con-
sumption of routers and links contributes to a significant
portion of the total chip power. Subspace snooping reduces
not only the network power, but also the power consump-
tion of tag lookups for snoops. Combining the two power
reduction effects leads to a significant on-chip power saving
for future many-cores.

Performance improvement: Figure 8 shows the nor-
malized execution times of three configurations. For cholesky,
FFT, and ocean, subspace reduces the execution times by 7-
8%. The average execution time is reduced by 4%. The per-

0

20

40

60

80

100

N
or

m
. N

et
w

or
k

T
ra

ffi
c

(%
)

Subspace Cost
Persistent Req.
Data
Coherence

TokenB
Subspace

ba
rn

es

ch
ol

es
ky fft lu

oc
ea

n

bl
ac

ks
ch

ol
es

ca
nn

ea
l

flu
id

an
im

at
e

sw
ap

tio
ns

S
P

E
C

jb
b

A
pa

ch
e

A
ve

ra
ge

Figure 10: Normalized network traffic: 32 cores

0

20

40

60

80

100

N
or

m
al

iz
ed

 R
un

tim
e

(%
)

Token Coherence Subspace

ba
rn

es

ch
ol

es
ky fft lu

oc
ea

n

bl
ac

ks
ch

ol
es

ca
nn

ea
l

flu
id

an
im

at
e

sw
ap

tio
ns

S
P

E
C

jb
b

A
pa

ch
e

A
ve

ra
ge

Figure 11: Normalized execution times: 32 cores

formance improvement is modest as the benchmark appli-
cations do not consume the network bandwidth intensively,
and the network provides enough bandwidth even for To-
kenB. However, in this paper, we did not explore the perfor-
mance improvement by other benefits of subspace snooping.
For example, the reduced power consumption in the net-
works and snoop tag lookups allows the power budget to be
used for a better performance. The processor clock speed
can be increased using the saved power budget, or power-
limited performance features can be used more aggressively
using the budget. The traffic reduction can also allow nar-
row network links. The saved area with the narrow links can
be reused to increase cache or other prediction table sizes.

6.3 Evaluation for 32 Cores
Figure 9 presents the snoop reduction rates with 32 cores.

The results include a configuration, called cluster-subspace.
The cluster-subspace bar shows the snoop reduction when
only 16 bits are used in a page table entry for 32 cores. Ad-
jacent odd and even number cores are clustered. Due to the
limitation of simulation platform, 32-core results have a less
number of applications compared to 16-core results. The av-
erage snoop reduction rate is similar to the 16 core results.
On average, 34% of snoops are reduced by subspace snoop-
ing without shrinking. The reduced effectiveness of subspace
snooping with 32 cores is partly due to the increased snoops
by the kernel traffic. Clustering two cores does not signifi-
cantly reduce the effectiveness of subspace snooping.

Figure 10 shows the network traffic for 32 cores. The
first bar shows TokenB, and the second bar shows subspace
without shrinking. Compared to the 16 core results, the
portion of coherence traffic increases to 85% from 72% in
the 16 core configuration. Figure 11 presents the normalized
execution times for TokenB and subspace without shrinking.
Even though snoop reduction rates in 32 cores are slightly
less than those in 16 cores, the performance impact is higher

in 32 cores, since the coherence costs become more expensive
in 32 cores than in 16 cores.

7. CONCLUSIONS
In this paper, we proposed a novel coherence filtering tech-

nique called subspace snooping. Subspace snooping main-
tains the stable sharers (subspace) of a memory location in
the page table entry, and snoop requests are issued only to
the cores in the subspace. The proposed OS-based approach
is not dependent upon a particular type of network topolo-
gies or coherence mechanisms, and is not limited by the
hardware storage to trace the sharing states of commonly
accessed pages. By integrating to Token Coherence on un-
ordered networks, subspace snooping reduces snoops by 44%
and network traffic by 27%.

The execution cycle improvement by subspace snooping
was modest (4%), as the benchmark applications do not
stress the networks intensively in our configurations. The
performance gain would increase, as the bandwidth require-
ment increases with more demanding applications or differ-
ent system configurations (for example with less private L2
caches). We expect the snoop and network traffic reduc-
tion to allow increased clock speeds and better performance
features by exploiting the saved power and area budgets.

Shrinking subspaces dynamically leads to only a minor
improvement for the set of applications we used. With the
costs for bloom filters, and the added complexity for the un-
safe page table updates, shrinking does not seem to be very
useful for our benchmark applications. However, shrinking
will become important to support long running applications,
where sharing changes and thread migrations will occur. Im-
proving the shrinking mechanism will be our future work.

8. ACKNOWLEDGMENTS
We would like to thank Doug Burger, who contributed a

lot to the inital study for this work. We also thank the
annonymous reviwers for their comments. This work is
supported by the IT R&D Program of MKE/KEIT. [2010-
KI002090, Development of Technology Base for Trustworthy
Computing]

9. REFERENCES
[1] IBM PowerPC 750FX and 750FL RISC Microprocessor

User’s Manual, Mar 2006.
[2] N. Agarwal, L.-S. Peh, and N. K. Jha. In-Network

Coherence Filtering: Snoopy Coherence Without
Broadcasts. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture(MICRO),
pages 232–243, New York, NY, USA, Dec. 2009. ACM.

[3] N. Agarwal, L.-S. Peh, and N. K. Jha. In-Network Snoop
Ordering(INSO) : Snoopy coherence on unordered
interconnects. In Proceedings of the 15th International
Symposium on High Performance Computer Architecture
(HPCA), 2009.

[4] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter.
Dynamic hardware-assisted software-controlled page
placement to manage capacity allocation and sharing
within large caches. In Proceedings of the 15th
International Symposium on High Performance Computer
Architecture (HPCA), pages 250–261, 2009.

[5] M. Azimi, F. Briggs, M. Cekleov, M. Khare, A. Kumar,
and L. P. Looi. Scalability port: A coherent interface for
shared memory multiprocessors. In Proceedings of the 10th
Symposium on High Performance Interconnects HOT

Interconnects, page 65, Washington, DC, USA, 2002. IEEE
Computer Society.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques(PACT), October 2008.

[7] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin,
M. D. Hill, and D. A. Wood. Multicast snooping: a new
coherence method using a multicast address network. In
Proceedings of the 26th Annual International Symposium
on Computer architecture(ISCA), pages 294–304,
Washington, DC, USA, 1999. IEEE Computer Society.

[8] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7):422–426, 1970.

[9] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Improving
multiprocessor performance with coarse-grain coherence
tracking. In Proceedings of the 32nd annual international
symposium on Computer Architecture(ISCA), pages
246–257, Washington, DC, USA, 2005. IEEE Computer
Society.

[10] A. E. Charlesworth. The Sun Fireplane system
interconnect. In Proceedings of the 2001 ACM/IEEE
conference on Supercomputing, page 7, 2001.

[11] P. Conway and B. Hughes. The AMD Opteron Northbridge
Architecture. IEEE Micro, 27(2):10–21, 2007.

[12] N. Eisley, L.-S. Peh, and L. Shang. In-Network Cache
Coherence. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture(MICRO),
pages 321–332, Washington, DC, USA, 2006. IEEE
Computer Society.

[13] M. Ekman, P. Stenström, and F. Dahlgren. TLB and
Snoop Energy-Reduction using Virtual Caches in
Low-Power Chip-Multiprocessors. In Proceedings of the
2002 international symposium on Low power electronics
and design (ISLPED), pages 243–246, New York, NY,
USA, 2002. ACM.

[14] N. D. Enright Jerger, L.-S. Peh, and M. H. Lipasti. Virtual
tree coherence: Leveraging regions and in-network
multicast trees for scalable cache coherence. In Proceedings
of the 41st IEEE/ACM International Symposium on
Microarchitecture, pages 35–46, Washington, DC, USA,
2008. IEEE Computer Society.

[15] C. Fensch and M. Cintra. An OS-based alternative to full
hardware coherence on tiled CMPs. In Proceedings of the
14th International Conference on High Performance
Computer Architecture (HPCA), pages 355–366, 2008.

[16] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches. In Proceedings of the
36th Annual International Symposium on Computer
Architecture(ISCA), pages 184–195, 2009.

[17] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform.
IEEE Computer, 35(2):50–58, Feb 2002.

[18] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and
D. A. Wood. Using destination-set prediction to improve
the latency/bandwidth tradeoff in shared memory
multiprocessors. In Proceedings of the 30th International
Symposium on Computer Architecture(ISCA), pages
206–217, June 2003.

[19] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token
coherence: Decoupling performance and correctness. In
Proceedings of the 30th Internalitonal Symposium on
Computer Architecture(ISCA), pages 182–193, June 2003.

[20] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill,
and D. A. Wood. Multifacet’s general execution-driven
multiprocessor simulator GEMS toolset. SIGARCH
Comput. Archit. News, 33(4):92–99, 2005.

[21] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood.
Bandwidth adaptive snooping. In Proceedings of the 8th
International Symposium on High Performance Computer
Architecture (HPCA), Feb. 2002.

[22] M. R. Marty and M. D. Hill. Coherence ordering for
ring-based chip multiprocessors. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on
Microarchitecture(MICRO), pages 309–320, Washington,
DC, USA, 2006. IEEE Computer Society.

[23] A. Moshovos. RegionScout: Exploiting coarse grain sharing
in snoop-based coherence. In Proceedings of the 32nd
International Symposium on Computer
Architecture(ISCA), June 2005.

[24] A. Moshovos, G. Memik, B. Falsafi, and A. N. Choudhary.
JETTY: Filtering snoops for reduced energy consumption
in SMP servers. In Proceedings of the 7th International
Symposium on High Performance Computer Architecture
(HPCA), pages 85–96, 2001.

[25] L.-S. Peh, N. Agarwal, N. Jha, and T. Krishna. GARNET:
A detailed on-chip network model inside a full-system
simulator. In International Symposium on Performance
Analysis of Systems and Software (ISPASS), April 2009.

[26] A. Raghavan, C. Blundell, and M. M. K. Martin. Token
tenure: Patching token counting using directory-based
cache coherence. In Proceedings of the 41st IEEE/ACM
International Symposium on Microarchitecture(MICRO),
pages 47–58, Washington, DC, USA, 2008. IEEE Computer
Society.

[27] P. Sindhu, J.-M. Frailong, J. Gastinel, M. Cekleov,
L. Yuan, B. Ghnning, and D. Curry. XDBus: A
High-Performance, Consistent, Packet-Switched VLSI Bus.
IEEE Compcon, pages 338–344, 1993.

[28] K. Strauss, X. Shen, and J. Torrellas. Flexible snooping:
Adaptive forwarding and filtering of snoops in
embedded-ring multiprocessors. In Proceedings of the 33rd
Annual International Symposium on Computer
Architecture(ISCA), pages 327–338, Washington, DC, USA,
2006. IEEE Computer Society.

[29] P. J. Teller. Translation-lookaside buffer consistency.
Computer, 23(6):26–36, 1990.

[30] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In Proceedings of the 22th
International Symposium on Computer
Architecture(ISCA), pages 24–36, Santa Margherita Ligure,
Italy, 1995.

[31] J. Zebchuk and A. Moshovos. Regiontracker: A case for
dual-grain tracking in the memory system. Technical
report, Computer Group, University of Toronto, 2006.

