
Appears in the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-44)

Architectural Support for Secure Virtualization under a
Vulnerable Hypervisor

Seongwook Jin, Jeongseob Ahn, Sanghoon Cha, and Jaehyuk Huh

Computer Science Department, KAIST
Daejeon, Korea

{swjin, jeongseob, shcha, and jhuh}@calab.kaist.ac.kr

ABSTRACT

Although cloud computing has emerged as a promising future com-
puting model, security concerns due to malicious tenants have been
deterring its fast adoption. In cloud computing, multiple tenants
may share physical systems by using virtualization techniques. In
such a virtualized system, a software hypervisor creates virtual ma-
chines (VMs) from the physical system, and provides each user
with an isolated VM. However, the hypervisor, with a full control
over hardware resources, can access the memory pages of guest
VMs without any restriction. By compromising the hypervisor, a
malicious user can access the memory contents of the VMs used by
other users.

In this paper, we propose a hardware-based mechanism to protect
the memory of guest VMs from unauthorized accesses, even with
an untrusted hypervisor. With this mechanism, memory isolation
is provided by the secure hardware, which is much less vulnerable
than the software hypervisor. The proposed mechanism extends the
current hardware support for memory virtualization with a small
extra hardware cost. The hypervisor can still flexibly allocate phys-
ical memory pages to virtual machines for efficient resource man-
agement. However, the hypervisor can update nested page tables
only through the secure hardware mechanism, which verifies each
mapping change. Using the hardware-oriented mechanism in each
system securing guest VMs under a vulnerable hypervisor, this pa-
per also proposes a cloud system architecture, which supports the
authenticated launch and migration of guest VMs.

Categories and Subject Descriptors

C.1.0 [Processor Architectures]: General; D.4.6 [Operating Sys-

tems]: Security and Protection

This research was partly supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Tech-
nology (2011-0026465), and by the IT R&D Program of MKE/
KEIT(2011-KI002090, Development of Technology Base for
Trustworthy Computing)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’11 December 3-7, 2011, Porto Alegre, Brazil.
Copyright 2011 ACM 978-1-4503-1053-6/11/12 ...$10.00.

General Terms

Security, Design

1. INTRODUCTION
Cloud computing has emerged as a promising future computing

model, which enables elastic resource provisioning to meet unpre-
dictable demands [5, 48]. In cloud computing, users run their pro-
grams in virtualized systems, and multiple virtual machines from
different users may share the same physical system. However, such
cloud computing based on virtualization poses a difficult challenge
to securely isolate co-tenants sharing a physical system. The con-
cern for security and privacy protection is one of the most important
reasons that have been hindering the rapid adoption of cloud com-
puting [38, 40].

In a virtualized system, a hypervisor, a software layer creating
and managing virtual machines (VMs), is responsible for isolating
any illegal accesses across virtual machine boundaries. However,
there have been concerns over vulnerabilities in hypervisors [36,
37]. Although several recent studies improve the security of hyper-
visors [8, 30, 46], the hypervisors, which have been increasing their
code sizes for better performance and more features, have become
too complex to simply verify their secure execution [8]. If hyper-
visors cannot be trusted, even a trustworthy cloud provider cannot
guarantee the protection of a virtual machine from a malicious co-
tenant.

Memory protection across virtual machines is a critical compo-
nent to support the secure execution of guest virtual machines, and
to guarantee the privacy of user information. For such memory
isolation, current virtualization techniques are based on traditional
software and hardware supports for virtual memory. A hypervisor
maps the memory of guest VMs to the real memory with guest-
physical to machine address translation. Although several different
techniques are used to support efficient address translation to the
machine address space, all these techniques rely on hypervisors to
prevent any illegal memory access across virtual machines [4, 31,
43]. A successful attack on the hypervisor can completely expose
the memory contents of guest virtual machines.

In the current memory virtualization techniques, at the highest
privilege level, hypervisors can control both aspects of memory
virtualization, memory allocation, and memory isolation through

address translation. A hypervisor determines a set of memory
pages to be allocated for a VM, and maintains a mapping table from
guest-physical to machine address (nested page table) for each VM.
In this paper, we propose the decoupling of memory isolation from
memory allocation, both of which are currently performed by the
hypervisor. With decoupling, the role of a hypervisor is limited to
the memory resource allocation to utilize the physical memory ef-
ficiently. The hardware processor is responsible for updating the

H− SVM

Request

Validate

UpdateUpdate

Virtual Machine

App App.....

Hypervisor

HW

SW

Nested Page Tables Nested Page Tables

App App.....

Hypervisor

Guest OS Guest OS

Memory Memory

Untrusted Trusted

Memory Allocation Memory Allocation

(a) Traditional Memory Isolation (b) HW−based Memory Isolation

Figure 1: TCB of hardware-based VM memory isolation

page mapping and setting the pointer to the nested page table to
schedule a VM on a core. Whenever the nested page table for a
VM changes, the hardware checks whether the update is valid. By
this decoupling, Trusted Computing Base (TCB) for memory isola-
tion is reduced to the hardware processor from the combination of
the hardware and hypervisor in conventional mechanisms. Figure 1
compares the hardware-based memory isolation with the traditional
memory management by hypervisors. The shaded parts represent
the TCB for memory isolation for each case.

There have been several prior studies to reduce TCB to the hard-
ware processor to securely execute applications or virtual machines.
AEGIS discusses a broad range of hardware-only architectures, or
hardware architectures with trusted software to run applications in
authenticated environments, even under a compromised operating
system [39]. As AEGIS assumes hardware attacks, the sensitive
data residing in the external memory is encrypted. In this paper, we
focus on the protection of guest VMs when the hardware is securely
protected in the data center of a cloud provider. With the restricted
threat model, our goal is to minimize necessary changes in the cur-
rent processor architectures and hypervisors as much as possible.
This paper shows that modest extensions on the currently available
hardware-assisted virtualization in commercial processors can lead
to a significantly improved memory protection under an untrusted
hypervisor, as long as the hardware is securely protected in the
server room of the cloud provider. NoHype eliminates a software
hypervisor entirely [22]. With NoHype, a VM runs only on one or
more fixed cores, and the memory is partitioned for each VM. Un-
like NoHype, our approach still supports the flexibility of software
hypervisors, but the memory protection mechanism is decoupled
from the hypervisors, and moved to the hardware processor.

This paper proposes a practical design for the hardware-based
VM isolation, called hardware-assisted secure virtual machine (H-

SVM) architecture, which aims to minimize the changes from the
currently available architectural supports for virtualization. Based
on H-SVM on each computing node, this paper also describes a
cloud system architecture to initiate a VM with its integrity checked,
and to migrate VMs across physical systems securely. The pa-
per shows how H-SVM supports the confidentiality and integrity
of guest VMs even under an untrusted hypervisor, and discusses
our design decisions not to support availability.

The rest of the paper is organized as follows. Section 2 describes
the current memory virtualization mechanisms, and the threat model
for our study. Section 3 presents the architecture of the proposed
H-SVM mechanism. Section 4 presents the cloud system archi-
tecture to guarantee the integrity of virtual machines during VM
creations and migrations. Section 5 discusses security analysis and
possible performance overheads. Section 6 discusses prior work,
and section 7 concludes the paper.

gPFN

Guest
Page Table

Guest Virtual Memory

. . .

Physical Memory

. . .

Hypervisor

nCR3
Nested

Page Table

MFN

Guest Physical Memory

nCR3 : Nested CR3 Register

MFN : Machine Frame NumbergPFN : Guest Physical Frame Number

gCR3 : Guest CR3 Register

gCR3

Guest OS

Figure 2: Address translation with nested paging

2. MOTIVATION

2.1 Hardware-Assisted Virtualization
Memory isolation in the current virtualization techniques is based

on the support for virtual memory with hardware address transla-
tion and page tables. In processors, a virtual address is translated
to a physical address with translation look-aside buffers (TLBs). If
the corresponding entry does not exist in the TLBs, either a HW or
SW-based page table walker fetches the entry from the page table
of the current address space. In this paper, we assume a HW-based
page table walker in our architecture, as the proposed architecture
aims to move the responsibility of page table management from hy-
pervisors to HW processors. For each context switch between ad-
dress spaces, the page table register, which points to the top-level
page table entry, must be properly set, so that the walker can tra-
verse the correct page table. In the popular x86 architectures, the
CR3 register stores the address of the top-level page table.

Virtualization adds an extra translation layer. A virtual address
in guest VMs must be translated into a guest-physical address (vir-
tual physical address) like non-virtualized systems, and, moreover,
the guest-physical address is translated to a machine address in
the real physical memory. The guest OS maintains the virtual to
guest-physical address mapping in per-process page tables, and the
hypervisor maintains per-VM guest-physical to machine address
mapping tables, called nested page tables. When the processor
supports only single-page table walks designed for traditional na-
tive operating systems, the hypervisor maintains direct translation
tables, called shadow page tables, to map virtual addresses to ma-
chine addresses directly.

The recent advancement of architectural support for virtualiza-
tion allows a nested hardware page table walker to traverse both
per-process page tables and per-VM nested page tables [4]. Fig-
ure 2 depicts the nested address translation with a per-process guest
page table and a per-VM nested page table. Each core has two
registers pointing to the two tables, one for the guest page table
(gCR3), and the other for the nested page table (nCR3). With the
hardware-assisted virtualization, the hypervisor has its own address
space, but unlike guest virtual machines, the hypervisor address
space uses a single translation without nested paging.

The hardware-assisted virtualization also facilitates a world switch
between a VM and the hypervisor contexts. For example, in the
AMD-V architecture [2], the context of each VM is defined in a
Virtual Machine Control Block (VMCB). The hypervisor, at the
host mode, executes the vmrun instruction to switch to a guest VM
context. The hardware processor, by executing micro-coded rou-
tines, saves the current hypervisor context to a specified area and
restores the guest VM context from the VMCB to the processor.
The VM context contains the register states including the pointer
to the nested page table. If an event, which must be handled by the
hypervisor, occurs, the hardware saves the guest VM context in the

VMCB, and restores the hypervisor context.
To isolate the memory of each VM, a hypervisor must protect

nested page tables from illegal modifications by guest VMs. Guest
VMs cannot read or modify the nested page tables. Also, for each
context switch between virtual machines on a core, the hypervi-
sor must change the nested page table pointer directly or by exe-
cuting the vmrun instruction. The hypervisor manages memory
allocation by monitoring memory usages of virtual machines, and
it can allocate and deallocate pages for a VM. For such mapping
changes, the hypervisor can modify the nested page table of the
VM. Note that the hypervisor also accesses its own memory space
through the address translation mechanism. Since the hypervisor
has a complete control over the modification of nested page tables,
a compromised hypervisor can read or modify the physical mem-
ory assigned for any guest VMs. A malicious user can map phys-
ical memory pages already allocated for other VMs to the address
spaces of its own VM or to the hypervisor.

2.2 Threat Model
To protect the memory of VMs even under a compromised hy-

pervisor, the proposed mechanism allows only the hardware (H-
SVM) to validate and update nested page tables, reducing the trusted
computing base (TCB) to the hardware system. The proposed mech-
anism can be vulnerable to hardware attacks, such as probing exter-
nal buses [6] or reading DRAM after power-off [17]. However, we
assume that the cloud provider is trustworthy and it does not inten-
tionally attempt to compromise the hardware system. The trustwor-
thy cloud provider protects its servers with physical security mea-
sures, as the provider not only has a legal obligation not to access
customers’ data without explicit permission, but also has a strong
business interest in protecting its reputation.

The TCB to protect the memory of guest VMs in the proposed
system does not include the hypervisor. We assume that hyper-
visors are vulnerable to remote attacks by malicious guest virtual
machines. The threat model assumes that an adversary with the
root permission of the hypervisor may attempt to access the mem-
ory of guest VMs. The proposed system can protect the memory of
guest VMs as long as the adversary cannot compromise the phys-
ical servers directly. With proper security measures on the server
room, getting accesses to the server room, and physically compro-
mising the systems are much harder than getting the root permis-
sion by remote attacks.

By not supporting hardware tamper-resistance, we simplify the
requirements for H-SVM significantly. H-SVM moves the min-
imum functionality in traditional hypervisors for updating nested
page tables to the hardware processor. The memory protection
mechanism in this paper addresses the isolation among virtual ma-
chines or from the hypervisor. It does not improve the security of
guest operating systems and applications by themselves.

2.3 Requirements for H-SVM
To guarantee VM isolation even under a compromised hyper-

visor, hypervisors must not be able to change nested page tables
arbitrarily. Instead, the H-SVM hardware directly modifies nested
page tables. One of the important requirements for H-SVM is to
minimize necessary changes in the current hardware architecture
and hypervisor, which are already very complex. The H-SVM sup-
port should be integrated into the current processor designs without
a significant increase of complexity, and the interfaces to the hyper-
visor must also be simple. Furthermore, the changes to the guest
OS must be very small or none to use many commodity operating
systems.

Another requirement for H-SVM is that it must still allow hy-

pervisors to manage memory pages as flexibly as the conventional
memory management mechanism. Although a hypervisor loses the
control for updating nested page tables directly, it must be able to
allocate and deallocate memory pages dynamically for virtual ma-
chines. The static assignment of memory for each VM restricts
memory management too severely to effectively utilize limited phys-
ical memory resources.

Furthermore, some physical memory can be shared between a
VM and the hypervisor for data transfers with I/O devices. VMs
also may share some physical pages for fast direct networking or
content-based memory sharing. For such cases, a physical memory
page can be mapped to the guest-physical pages of multiple VMs
or the hypervisor. H-SVM must allow such sharing only after the
guest OSes agree to the sharing of certain memory pages.

H-SVM must support the authenticated deployment and migra-
tion of virtual machines, even if hypervisors are compromised. Un-
less an authenticated guest OS is running on a virtual machine, the
memory protection mechanism itself does not provide a trusted vir-
tual machine to users. In this paper, we describe how to launch a
VM with an authenticated guest OS image, and how to migrate a
VM to different physical systems with its privacy protected. We
will discuss the cloud system architecture in Section 4.

3. ARCHITECTURE

3.1 Overview
H-SVM improves memory isolation among VMs by blocking

direct modifications of nested page tables by a hypervisor. Nested
page tables for VMs are stored in the protected memory region,
which can be accessible only by the H-SVM hardware. For any
changes in memory allocation for a VM, the hypervisor, at the priv-
ileged level, makes a request to H-SVM to update the nested page
table for the VM. If the hypervisor is compromised, it can try to
allocate a physical memory page already assigned to a VM to the
address space of the hypervisor or a malicious VM. Before updat-
ing the nested page table, H-SVM checks whether the request may
violate memory isolation among VMs. If a physical memory page
is deallocated from a VM, H-SVM cleans up the deallocated page
by setting all the bytes to zeros.

Figure 3 presents the overall architecture of H-SVM. H-SVM
can be implemented either as a separate controller in the proces-
sor chip, or can be added as microcode routines. Such microcode
routines are commonly used to implement complex features in the
x86 architecture. In the rest of the paper, we will assume such a
microcode implementation. The nested page tables of all VMs are
stored in protected memory pages. The protected memory region
is just part of the physical memory, which is accessible only by H-
SVM. H-SVM blocks accesses to the protected memory even from
the hypervisor, by denying page mapping requests to the protected
pages.

H-SVM maintains several data structures, including VM control
information, nested page tables, and a page ownership table, in the
protected memory region. The VM control information stores var-
ious control information for each VM, including the area to save
register states, the address of the top-level nested page table, and
an encryption key created for the VM. The VM control informa-
tion is similar to the VMCB in the AMD-V architecture. The page
ownership table tracks the owner of each physical memory page,
and thus the number of entries is as large as the number of physical
memory pages in the system. Each entry, corresponding to a phys-
ical page, records the ownership of the page. A VM, hypervisor, or
H-SVM itself can be the owner of a page. If H-SVM is the owner
of a page, the page is used for the protected memory area. The page

Virtual

Machines

App App. . . .
Guest OSEncryption Set−Share

Memory Management VM Management

HypervisorSwitch

Create Map

Unmap Swap

ProcessorLogic
Micro−code H−SVM

= New Component = Existing Component

Nested Page Tables

VM Control Information

Page Ownership Table

Protected Memory

External Memory

Figure 3: Hardware-assisted secure virtualization

ownership table is used to verify whether a page map request from
the hypervisor is valid or not.

When the control is transferred to the hypervisor by interrupts,
H-SVM must save the register states of the current virtual CPU
(vCPU) to the VM control information. After saving the VM state,
H-SVM sets the page table pointer to the page table used by the hy-
pervisor. When the hypervisor schedules a vCPU to a physical core,
the hypervisor requests H-SVM, by executing a privileged instruc-
tion, to place a VM to a core. For the scheduling request, H-SVM
restores the VM state from the VM control information, includ-
ing the nested page table pointer. As discussed in Section 2.1, the
current x86 processors already support a similar world switch oper-
ation, such as the vmrun instruction in AMD-V. A main difference
of H-SVM from the current support for vmrun is that H-SVM re-
quires that the VM control information must not be accessible by
the hypervisor.

With H-SVM, the hypervisor conducts normal memory manage-
ment operations for VMs. For a VM creation, it decides a set of
memory pages for the new VM, and makes requests to update the
nested page table of the newly created VM. The hypervisor can also
deallocate memory pages from a VM, often by the ballooning tech-
nique, but the actual updates of nested page tables occur in H-SVM.
The role of H-SVM is limited only to the protected update of nested
page tables and validation before any modification to nested page
tables. Hypervisors still have a control over the memory resource
management to assign memory pages to VMs.

3.2 Basic Interfaces
This section describes the basic interfaces of H-SVM. Hypervi-

sors or VMs execute special instructions to make requests to H-
SVM. There are four basic interfaces to initialize the VM control
information, to update nested page tables, and to schedule a VM.

Create VM: When a hypervisor creates a VM, it requests H-
SVM to create a new nested page table for the VM. H-SVM initial-
izes the VM control information, and creates a nested page table
for the VM. After the data structures are created in the protected
memory area, H-SVM returns a VM identifier, which the hypervi-
sor will use to designate the created VM for subsequent interactions
with H-SVM. H-SVM also creates a per-VM encryption key, which
will be used for page swap requested by the hypervisor.

Page map: To assign a physical memory page to a VM, the hy-

pervisor requests a page map operation to H-SVM. A page map op-
eration maps a machine memory page (frame) to a guest-physical
page by updating a nested page table entry. The critical compo-
nent for memory isolation is to check the ownership of a physical
page for each page map operation by H-SVM. Before updating the
nested page table entry, H-SVM must check, by looking up the
page ownership table, whether the physical page is owned by an-
other VM. If another VM already owns the requested physical page,
the map operation is aborted. When a nested page table entry is up-
dated for a VM by the request of the hypervisor, the VM becomes
the owner of the physical page. This checking mechanism prevents
a compromised hypervisor from creating any illegal mapping to the
pages already used by other VMs.

Page unmap: To deallocate a physical memory page from a VM,
the hypervisor makes a page unmap request to H-SVM. H-SVM
modifies the corresponding nested page table entry, and clears the
content of the memory page before completing the operation. H-
SVM also resets the owner of the page in the page ownership table,
marking it as a free page. With clearing, the contents of free pages
cannot contain any information from prior guest VMs.

Schedule VM: When the hypervisor needs to schedule a VM to
a core, the hypervisor makes a schedule VM request to H-SVM.
The hypervisor cannot directly update the page table pointer to the
nested page table. The hypervisor makes a VM schedule request
with a VM identifier, and H-SVM sets up the register state from
the VM control information. The hypervisor does not know the
resister states including the address of the top-level nested page
table. As only H-SVM can update the nested page table pointer
and register states, the hypervisor cannot force a running VM to
use a compromised nested page table. This operation is similar
to vmrun in AMD-V, except that the VM control information is
protected from the hypervisor.

3.3 Page Sharing and Swapping
Page Sharing: Some physical pages can be shared between a

guest VM and the hypervisor, or among guest VMs. Such page
sharing is used for communication for I/O requests, or content-
based memory sharing [15, 29]. By default, H-SVM allows a phys-
ical memory page to be mapped only to a single VM. However, to
make a page sharable, H-SVM needs an explicit permission from
the guest VM. By requiring the permission from the guest OS, the
guest OS can be prepared not to store any sensitive data on such
shared pages.

Guest OSes, during their boot processes, may declare a subset of
guest-physical pages as sharable pages. For example, in virtualized
systems with the Xen hypervisor, guest OSes share some pages
with the hypervisor to transfer I/O data. Guest OSes can identify
such pages and allow page sharing with the hypervisor. Guest OSes
execute an untrappable instruction to send a request to H-SVM to
mark a page sharable.

Page Swap: In virtualized systems, both guest OSes and the
hypervisor can swap out memory pages to disks to use the limited
physical memory efficiently. For a given guest-physical memory
capacity, a guest OS manages the memory with traditional OS-level
memory management policies. However, in virtualized systems,
the memory allocated for each VM can change dynamically. One
of the most common techniques for dynamic VM memory man-
agement is a ballooning technique [45]. With ballooning, the guest
OS decides which memory pages are rarely used, and deallocates
the pages by assigning them to the balloon driver space. The bal-
looning technique can provide more efficient memory management
than direct swapping by the hypervisor, since the guest OS on each
VM can make much better decisions on selecting victim pages than

the hypervisor. Using the technique, the guest OS releases un-
used memory pages to a pool of free memory pages, which can
be used by other VMs. Furthermore, when a system is running out
of the physical memory, the hypervisor may request each VM to
free some memory pages.

For these page swap operations by a guest OS, the guest OS is re-
sponsible for encrypting the contents, and maintaining the integrity
of swapped pages. Since the guest OS needs to protect its other
files in addition to the swap file, it must use a secure file system,
which can guarantee the confidentiality and integrity of its data in
untrusted storage.

In addition to ballooning, the hypervisor may also evict mem-
ory pages to its disk swap space directly. However, the direct page
swaps by the hypervisor are much less commonly used than the
ballooning technique [45]. Although its uses are less common then
ballooning, H-SVM can support direct page swapping by the hy-
pervisor. As the hypervisor writes the memory pages to the swap
disk, the contents of evicted memory pages must be encrypted by
H-SVM before being accessible to the hypervisor. When a VM is
created, H-SVM creates an encryption key for the VM. When the
hypervisor picks a victim page, H-SVM encrypts the page with a
per-VM key, and allows the hypervisor to read the page. Per-VM
keys are stored in the protected memory region.

To maintain the integrity of swapped pages, H-SVM also needs
to store the hashes of swapped out pages in the protected mem-
ory region. Since maintaining the list of hash values for swapped
pages with a simple micro-coded routine may be complicated, H-
SVM can use hash trees, which are used for integrity checking of
data stored in untrusted storage [28]. Each VM has a hash tree for
its swapped pages, and the hypervisor maintains the per-VM hash
trees. However, H-SVM stores the top hash of each tree in the pro-
tected memory region. For a page swap request, the hypervisor
must provide H-SVM with the hash values of the associated branch
in the hash tree in a memory page. H-SVM will verify the pro-
vided hash tree by comparing the computed value with the stored
top hash, and update the top hash with the hash of the new swap-out
page. For a swap-in, the hypervisor must provide H-SVM with the
hash values of the associated branch from the hash tree. H-SVM
decrypts the page first, and its hash value is computed and verified
with the branch.

3.4 Implementation Issues
H-SVM requires minor changes in the current HW support for

virtualization, as the most of its basic functions can be implemented
in microcodes. In this section, we discuss a possible implementa-
tion of H-SVM with microcodes and its performance overheads.

Microcode Implementation: Operations in H-SVM can be
implemented with microcodes which are commonly used to sup-
port complex instructions. Each function requires relatively simple
micro-ops sequenced from the microcode ROM in the front-end of
the processor. Among the four basic interfaces, the create VM

operation mostly copies a template of necessary initial setups for a
new VM to memory. The schedule VM operation is the same as
the vmrun instruction already supported by the current hardware-
assisted virtualization. To show the complexity of H-SVM imple-
mentation, in this section, we show a possible implementation of
the other two basic interfaces, page map, and page unmap. In
this implementation, we assume that microcode executions in H-
SVM use machine addresses directly for load and store operations
to eliminate the overheads of changing address space between the
hypervisor and H-SVM.

For all the implementations, a global spin lock is used to protect
the ownership table and nested page tables, when multiple cores

Algorithm 1 map (VMID, GPA, MFN)

Input: VMID : virtual machine identification
GPA : Guest-physical address
MFN : Machine Frame Number

1: lock
2: ownership ← ownership_table[MFN]
3: if ownership.owner is not null then

4: trap
5: end if

6: walk nested_page_tables[V MID] for GPA
7: if walk fails then

8: return_register ← disconnected mapping
9: unlock

10: exit
11: end if

12: page_table_entry[GPA]← MFN
13: ownership.owner ← V MID
14: unlock

Algorithm 2 add_pt (VMID, GPA, MFN)

Input: VMID, GPA, MFN
1: lock
2: ownership ← ownership_table[MFN]
3: if ownership.owner is not null then

4: trap
5: end if

6: initialize memory page[MFN]
7: ownership.owner ← HSV M
8: walk nested_page_tables[V MID] for GPA
9: if current level is not last level then

10: current_entry.mfn←MFN
11: if current level + 1 is not last level then

12: return_register ← continue
13: else

14: return_register ← success
15: end if

16: end if

17: unlock

request the operations. With a correctly running hypervisor, such
locking may not be necessary, as the hypervisor must serialize the
execution of the mapping change codes, which request map or un-
map operations. However, malicious hypervisors may try to corrupt
nested tables or the ownership table by causing a race condition in-
tentionally. To avoid such an attack, we add a simple global spin
lock to serialize the operations, which checks a fixed memory word
in the protected memory region as a lock variable. In the example
implementation, we did not attempt to optimize the performance
with more fine-grained locking.

Algorithms 1-3 present the pseudo codes for map, add_pt, and
unmap functions. A map operation in Algorithm 1 with a given
target VM ID, guest physical address (GPA), and machine frame
number (MFN), updates the nested page table entry of GPA with
a new mapping to MFN. It first checks whether the current owner
of the machine frame is null (free page). Otherwise, the execution
will cause a fault. If the ownership checking succeeds, it walks
the nested page table for the VM to fetch the page table entry for
GPA. When a new machine frame is added to the VM, it is pos-
sible that intermediate and leaf entries in the page table are not
yet constructed. Therefore, a nested page table walk can fail, if it
encounters a missing intermediate or leaf entry in the page table
during the walk. If a page walk fails, it returns the failure status to
the hypervisor, and exits the map function. Otherwise, it updates
the page table entry to the new MFN, and updates the owner for
MFN in the ownership table.

If a page walk fails due to an incomplete page table, the hypervi-

Algorithm 3 unmap (VMID, GPA, MFN)

Input: VMID, GPA, MFN
1: clear memory page[MFN]
2: lock
3: ownership ← ownership_table[MFN]
4: if ownership.owner is HSV M then

5: trap
6: end if

7: walk nested_page_tables[V MID] for GPA
8: page_table_entry[GPA] ← NULL
9: ownership_table[owner] ← NULL

10: TLB_flush(GPA)
11: unlock

Algorithm 4 a map operation called from the hypervisor

1: result ← map(V MID, GPA, MFN)
2: if result is not success then

3: while result is not success do

4: result ← add_pt(V MID, GPA, freepage− > mfn)
5: freepage ← freepage− > next
6: end while

7: result ← map(V MID, GPA, MFN)
8: end if

sor calls add_pt with a free memory page, and H-SVM builds the
incomplete part of the nested page table. Algorithm 2 shows how to
add a new page table entry to a nested page table. The function first
checks if the given MFN is a free page, and initializes the new page.
Also, the owner of MFN must be updated to H-SVM, to include the
newly added part of the nested page table in the protected memory.
After initialization, the operation walks the nested page table to the
last available entry, and sets the last entry with the address of the
new free page. If the added one is the last level entry in the nested
page table, it will return a success status. If the add_pt func-
tion returns a continue status, the hypervisor executes the operation
again with a new free page to add the next level page table entry.
This page table construction mechanism relieves H-SVM from the
burden of managing its own free pages for nested page tables. The
hypervisor provides H-SVM with a free page. H-SVM checks the
ownership status of the free page, and constructs the nested page
table.

Algorithm 4 shows how the hypervisor executes the map opera-
tion. If the initial map operation fails due to a page walk failure, it
will try to add the necessary intermediate or leaf page table entry
by calling add_pt with a free memory page. Once the page table
construction is completed, map is called again.

The implementation of unmap is straightforward as shown in
Algorithm 3. It clears the content of the given machine frame,
and updates the corresponding nested page table entry. It also
updates the page ownership table entry, and flushes the TLB for
the given GPA. These microcode-based implementations may over-
write some register values. Those registers whose values are de-
stroyed by the H-SVM operations, should be defined in the ISA, so
that the hypervisor can save and restore those values.

To quantify the complexity of the microcode implementations,
we have implemented micro-coded routines for the operations. The
implementation is based on the instruction sequences compiled from
the routines written in C. We slightly modified the compiled in-
struction sequences to have only simple RISC-like instructions. Ta-
ble 1 summarizes the numbers of instructions for the operations.
The numbers of static instructions are relatively small between 70
and 100 instructions for all the operations, showing that the com-
plexity of each routine is low. As those routines are contained in
the microcode ROM, the compromised hypervisor cannot modify

Operation # of inst. # of inst. executed # of mem insts. executed

Page map 82 79 18

Page unmap 70 1600 528

Add PT 94 1627 536

Table 1: Instructions for basic interfaces in microcode

them. The numbers of instructions executed in a normal execution
without any fault are much larger in unmap and add_pt than in
map, since those two operations contain a loop to clear or initialize
a page.

Hypervisor Changes: To use H-SVM, the hypervisor needs to
be slightly modified, but the modification is minor. The most of
the hypervisor changes are to move some functions from the hy-
pervisor to H-SVM. For example, for a map operation, the current
hypervisor updates the nested page table directly, but with H-SVM,
it is replaced with a request to H-SVM. To support the integrity of
swapped pages by H-SVM, the hypervisor must maintain the hash
tree for each VM for swapped pages, and request H-SVM to update
the top hash value in the protected memory.

Guest OS Changes: By default, guest OSes do not need to be
modified, if a VM always uses VM-private pages. To support page
sharing, guest OSes must be slightly modified to add features to
make page sharing requests. The guest OS can identify the region
of guest physical memory used for device drivers to communicate
with the hypervisor, and it sets the region as shared pages. To en-
able guest-level swapping, guest OSes must encrypt pages before
sending them to guest swap spaces, and maintain the hash values
for the swapped pages for integrity checking.

Performance Overhead: The performance overheads of H-
SVM occur during page map and unmap operations. During a page
map operation, H-SVM looks up the page ownership table, which
may need several memory references. However, a page allocation
operation is a relatively uncommon event, and even a few thousand
extra processor cycles for checking should have a negligible impact
on the overall performance. For page unmap operations, the page
content must be cleared. However, page deallocation is often done
in background.

Encryption overheads for swapping pages by guest OSes may
reduce the system performance. Compared to the slow disk op-
eration latencies, the encryption latency is relatively short. With
the improving CPU performance and recent supports for hardware-
accelerated encryption [19], the overhead will decrease. Further-
more, the guest OS may reduce the encryption overheads by not
swapping out sensitive data as much as possible.

3.5 Protection from DMA
Securing nested address translation protects the memory of guest

VMs from accesses through instruction executions in processors.
The other source of memory accesses in systems is Direct Memory
Access (DMA) for I/O handling. As the hypervisor or the domain0
VM controls I/O devices and DMA mechanisms, a compromised
hypervisor can potentially read or corrupt the guest VM memory
through DMA. H-SVM protects the memory of guest VMs from
DMA, by extending IOMMU (I/O memory management unit), which
is supported by both Intel VT-d and AMD-V [1, 18]. IOMMU sup-
ports an address translation mechanism from a device address space
to the physical memory space. The address range for a DMA ac-
cess from I/O devices must be translated to physical addresses with
an I/O page table. Currently, the hypervisor manages and updates
the I/O page table for each VM. During the address translation pro-
cess, IOMMU enforces memory protection, by checking whether
DMA accesses are allowed or not for the physical address range.

As DMA accesses are processed with an address translation mech-

anism using page tables, similar to memory accesses from CPUs,
the same mechanism of protecting nested page tables is used to
protect I/O page tables. Unlike the current IOMMU architecture,
I/O page tables should reside in the protected memory region along
with nested page tables, and only the hardware H-SVM must be
allowed to update the I/O page tables directly. Guest VMs or the
hypervisor can request H-SVM to update the DMA protection sta-
tus of memory pages owned by themselves. H-SVM must allow
the change of the protection status, only when the requesting VM
or hypervisor owns the corresponding page by checking the page
ownership table.

An alternative way of securing guest VM memory from DMA is
to extend Device Exclusion Vector (DEV) [3]. DEV is a bit vector
representing the entire physical memory at page granularity [3].
For each DMA operation, the hardware system checks whether the
physical address range for the operation is allowed by checking the
corresponding bits in DEV. Unlike IOMMU, DEV does not support
address translation, but it can enforce memory protection for DMA.
Currently, the hypervisor can change the content of DEV, and thus
control whether DMA is allowed for each physical memory page.
To protect guest memory from accesses through DMA, DEV must
be moved to the protected memory region controlled by H-SVM.

4. CLOUD SYSTEM ARCHITECTURE
In the previous section, we presented the H-SVM architecture

on a single physical system. However, deploying a VM securely
to a system, and migrating a VM across multiple physical systems
require the coordination of the cloud management system (cloud
manager) and computing nodes. In this section, we describe how
H-SVM interacts with the cloud manager for the authenticated cre-
ation and migration of VMs.

4.1 Overview
In the previous section, H-SVM protects a guest VM, assuming

the VM is running a correct guest OS image. However, if the hyper-
visor is compromised, it can change the guest OS image to create a
VM running a compromised OS, and after the guest OS starts, the
compromised OS can make the sensitive memory region sharable.
Therefore, the integrity of the created VM must be validated, and
only after such a validation process, the VM should become avail-
able to users.

In this paper, we describe a simple cloud system organization
using a separate cloud management system. The management sys-
tem, or cloud manager, is a physically separate system from the
computing nodes, and it does not run any user virtual machines. To
deploy a user VM, the cloud manager makes requests to the hyper-
visor in a computing node. The user VM is created by the hypervi-
sor, and its integrity is checked by a chain of validation processes
rooted at H-SVM. The cloud manager also supervises the migration
of a VM from a computing node to another. For the integrity check-
ing of a newly created VM, and the secure transfer of VM images
during migration, the cloud manager and H-SVM in the computing
node must be able to communicate in an authenticated manner.

To support a trusted communication path between the cloud man-
ager and H-SVM, each hardware processor has a unique public and
private key pair. The private key never leaves the processor chip,
and the public key is registered in the cloud manager. A similar
technique is used for TPM (trusted platform module) [42], which
is widely available in server systems. Unlike TPM, which is a sep-
arate chip connected as an I/O device, the private key for H-SVM is
embedded in each processor. Such embedding of a unique key pair
has also been discussed in several prior studies for hardware-rooted
trustworthy systems [10, 24].

 Node Node

Hypervisor

Hardware

H−SVM
Manager
Cloud

Computing Nodes

Node

Virtual Machines

private key

(manager)

public keys
of computing
nodes

private key (node)

H−SVM

Trusted Communication

public key (manager)

Cloud System

Figure 4: Authenticated communication between the cloud

manager and a computing node

During the initial installation of computing nodes, the cloud man-
ager keeps the list of public keys of all the computing nodes in the
cluster. Any messages created by H-SVM are signed with its pri-
vate key, and the cloud manager can authenticate the message by
checking it with the public key of the sender system. Although the
messages must be transferred through I/O paths provided by the
potentially malicious hypervisor, the authentication prevents the
hypervisor from forging messages between H-SVM and the cloud
manager. We also assume H-SVM knows the public key of the
cloud manager. The public key of the cloud manager is stored in
the BIOS of the system, and cannot be updated by the hypervisor.
During a boot process, BIOS copies the public key of the cloud
manager to the memory area which will be used by H-SVM. Fig-
ure 4 depicts the cloud system organization with the cloud manager
and computing nodes.

As the cloud manager and H-SVM in a computing node know
the public key of each other, subsequent communications between
the two systems can be authenticated, as even the compromised
hypervisor, which provides network I/Os, cannot forge messages.
In the next two sections, we sketch the processes for deploying a
VM, and migrating a VM to another system.

4.2 Deploying a Virtual Machine
When a VM is created, H-SVM and the guest OS on the VM

communicate to validate the integrity of the OS. During the boot-
ing procedure, the OS initiates a validation step by calling H-SVM.
If the OS does not initiate the validation process, H-SVM does not
allow the created VM to be used. The validation process consists of
two steps. Firstly, H-SVM checks a small fixed location of guest-
physical memory space, where a validation program resides. H-
SVM receives a hashed value of the memory image of the program
from the cloud manager, and verifies the program in the memory is
a correct one. Secondly, once the integrity of the program is val-
idated, H-SVM launches the program to check the entire memory
content of the newly booted OS. Such program integrity checking
has been discussed in prior work to validate OS and application
program images [7, 8, 27, 39].

As the cloud manager must know the correct image of the booted
OS, it sends the hash value of the memory image of the guest OS
to H-SVM. Note that the communication between the H-SVM of
computing nodes and the cloud manager is secure, even with an
untrusted hypervisor between them. The hypervisor may block any
packets from the cloud manager, to avoid the validation process,
but in that case, the created VM will not be available to a cloud
user. The two-step validation process minimizes the memory pages

Storage

Hardware

(5)

Cloud Node

H−SVM

Hypervisor

(4)

(1)

Cloud System

(2)

(2)

(3)

(6)

VM
Cloud Manager

Measured memoryValidation program

(1) Initiate a VM creation
(2) Load an OS image
(3) Attest the validation program
(4) Hash the OS image
(5) Send the hash value
(6) Verify the hash value

Figure 5: Virtual machine deployment procedure

which must be directly checked by H-SVM. Figure 5 depicts the
authenticated VM creation initiated by the cloud manager (1). Af-
ter the hypervisor loads the OS image (2), H-SVM attests the val-
idation program (3). The validation program gets the hash of the
entire OS image, and returns it to H-SVM (5). H-SVM compares
the hash value with the one provided by the cloud manager (6).

4.3 Checkpointing and Migrating VMs
Virtual machines can be suspended and resumed later in the same

or a different system. For a VM suspension operation, hypervisors
create a checkpoint containing the memory contents and register
states for a VM. To create such a checkpoint, conventional hypervi-
sors must directly read the memory contents and register values of
a VM. The created checkpoint is written to disk files or transferred
to another system by networks. However, since a hypervisor can-
not read the memory and register contents of a VM directly with H-
SVM, H-SVM must encrypt those contents before they are exposed
to the hypervisor. Live migration is similar to checkpointing, but it
must be able to process each memory page independently. During a
live migration process, the hypervisor will send the memory pages
of a VM to another system, but some pages will be updated during
the transmissions, as the VM is running. Therefore, the updated
pages may be sent multiple times, until a short suspension of the
VM to finalize the migration process. In both checkpointing and
live migration, H-SVM must encrypt the contents of a VM.

In this paper, we assume that the cloud manager knows the list
of computing nodes in the cloud system, and has the public keys of
the computing nodes. Each computing node knows the public key
of only the cloud manager, and it cannot directly communicate with
another computing node in a secure manner. Therefore, the cloud
manager must act as an intermediary for the transfers of encrypted
data for migration from a source node to a destination node. The
source node sends the encrypted data to the cloud manager using
the public key of the manager. The cloud manager must decrypts
the message with its private key, and must encrypt the decrypted
message with the public key of the destination node, so that only
the destination node can decipher the message. Although it may
be possible to support a secure direct communication among com-
puting nodes by exchanging the public key of each other through
the cloud manager, it may increase the complexity of operations
implemented in H-SVM.

This paper does not provide a complete protocol to securely trans-
fer a checkpoint or an encrypted memory page. The protocol must
provide the integrity of data as well as the confidentiality while
minimizing the complexity of the H-SVM operations. As a com-
puting node and cloud manager know the public key of each other,

we believe such secure transmissions are possible. For example,
H-SVM in a source node encrypts a memory page with a random
symmetric key, and it encrypts the symmetric key, the VM identi-
fier (VMID), and the guest physical page number (GPN) with the
public key of the manager, to support the confidentiality. Each mes-
sage should be signed with a digital signature using the private key
of the source node to support the integrity of the message. The
cloud manager must check the integrity of the received message,
and decipher the symmetric key, VM ID, and GPN. To relay the
message to the destination computing node, the cloud manager en-
crypts the symmetric key and the other information with the public
key of the destination node, and signs the message with its private
key for integrity. This overly simplified sketch is incomplete and
includes possible security flaws. The simple scheme is vulnerable
to replay attacks, as the hypervisor may use obsolete messages from
the previous migration sessions. To avoid such replay attacks, the
cloud manager must initiate a migration session with a nonce, and
the sending node should include the nonce and message sequence
number in all the messages for the migration session. Image trans-
fers between the manager and destination node should use a similar
protocol. Designing a secure protocol which is simple enough for
H-SVM, and evaluating its performance overheads, will be our fu-
ture work.

5. EVALUATION

5.1 Security Analysis
H-SVM supports the confidentiality and integrity of guest VMs,

even if a software hypervisor is compromised. However, the avail-
ability of guest VMs is not fully guaranteed by H-SVM. In this
section, we discuss what aspects of security can be supported by
H-SVM.

H-SVM is vulnerable to hardware attacks, and cloud providers
must protect the systems in its data center with physical security
measures. The cloud management system, which provides authen-
ticated launches and migrations of guest VMs, must be protected
with higher security measures than computing nodes. Not exposing
the cloud manager directly to cloud users will improve the security
of the system. Also, the root password of the cloud manager must
be available to fewer employees with a higher security clearance
than the root passwords of computing nodes. H-SVM only protects
guest VMs from malicious co-tenants or the compromised hyper-
visor. The security problems of guest operating systems and user
applications, which exist even in isolated non-virtualized systems,
will not be mitigated by H-SVM. However, the integrity checking
mechanism for guest OS images, which is necessary to support H-
SVM, will indirectly enforce cloud users to use at least validated
OS images.

Confidentiality: The physical memory of a system can be ac-
cessed through two possible ways, the execution of memory in-
structions and DMA operations. Although some architectures sup-
port memory access modes, which do not use page-based address
translation (e.g. real address mode in x86), H-SVM must disable
such modes for guest VMs and the hypervisor, and force all mem-
ory instructions to use the hardware-based nested address transla-
tion. As H-SVM protects nested page tables for processor-side ac-
cesses, and I/O page tables with IOMMU for DMA-side accesses,
even a compromised hypervisor cannot access the memory region
not owned by itself.

However, H-SVM may not guarantee the confidentiality of guest
VMs from side-channel attacks. As physical systems including
caches can be shared by guest VMs, a malicious VM may attempt
to extract confidential information through side-channel attacks [9].

There have been several studies for solutions to such attacks [32,
33, 47]. It is necessary to employ such solutions, orthogonal to the
H-SVM mechanism, to prevent side-channel attacks.

Integrity: For the effectiveness of H-SVM, the integrity of sys-
tem BIOS must be guaranteed. BIOS contains a critical setting
information, which turns on or off H-SVM and sets the address-
ing mode. Furthermore, BIOS for x86 architectures also contains
patches for microcodes used in processors, with which the rou-
tines of H-SVM are implemented. H-SVM may use a conventional
mechanism using TPM (Trusted Platform Module) to validate the
content of BIOS [42]. The cloud manager must remote-attest the
BIOS content using TPM-based remote attestation protocols.

H-SVM in computing nodes and the cloud manager protect the
integrity of guest OS images. As discussed in Section 4, H-SVM
verifies the validation program, and the validation program verifies
the OS image in the guest memory. Using the authenticated com-
munication between the cloud manager and H-SVM, the hash of
the OS image is compared to the known hash values stored in the
cloud manager.

The confidentiality and integrity of I/O data used by a guest OS
must be guaranteed by the guest OS, as the untrusted hypervisor
transfers or stores the data. There have been numerous studies for
protecting data in untrusted networks or storage, and the guest OS
can use one of the mechanisms, which meet its security require-
ments [20, 23, 34]. If the guest OS uses a secure file system, pro-
tecting the integrity of swapped pages by the OS is straightforward,
as the swap file is part of the file system. However, H-SVM is re-
sponsible for protecting the integrity of pages swapped by itself.
As discussed in Section 3.3, H-SVM uses a hash tree for each VM
to protect the swap file integrity.

A limitation of this study is that it does not provide a secure pro-
tocol for VM migration which must support the integrity as well
as the confidentiality of migration data. The simplified sketch of
a possible protocol in Section 4.3 is incomplete, and contains pos-
sible security flaws. The protocol should be simple enough to be
processed by H-SVM, and the design of the protocol will be our
future work.

Availability: H-SVM does not guarantee the availability of guest
VMs. To allow complex but effective resource management by hy-
pervisors, the hypervisors still control the resource allocation poli-
cies for guest VMs even with H-SVM. By allowing such a flexible
management, a compromised hypervisor may not schedule guest
VMs to CPUs, deallocate memory, or drop packets for VMs. Guest
VMs may become unavailable, or their performance may drop. The
use of system monitoring through the cloud manager can mitigate
the availability problem. For example, the cloud manager can peri-
odically check the availability of guest VMs by sending a message,
and waiting for a response. Also, the guest VMs may track how
many scheduling slots they actually receive from the hypervisor,
and report any scheduling problem to the cloud manager. With H-
SVM, the availability of guest VMs is sacrificed in favor of the
flexibility of resource management by hypervisors.

Required hardware changes: Compared to traditional VM
isolation supported by a hypervisor, H-SVM reduces the size of
TCB for VM memory protection, and provides a strong isolation
between the trusted HW components and the untrusted hypervi-
sor, as the hypervisor cannot alter the H-SVM microcodes and the
states of their execution. H-SVM requires modest changes in the
hardware. Firstly, H-SVM must add the new instructions imple-
mented in the microcode ROM. Secondly, certain registers must be
accessible only during the executions of H-SVM microcodes. The
registers specifying the context of a VM, including the register for
the nested page table (nCR3), must be updated only by H-SVM mi-

crocodes. Thirdly, IOMMU must be supported, and H-SVM must
protect I/O page tables. Also, only H-SVM must be allowed to
change the register for the current I/O page table. Fourthly, each
processor must have a unique pair of public and private keys for
secure communications with the cloud manager. For performance,
the processor may support a hardware acceleration for encryption
instructions, but it is not required.

5.2 Performance Evaluation Methodology
To evaluate the performance impact of H-SVM, we modified the

Xen hypervisor to emulate the overheads of page map and unmap
operations. For a map operation, extra codes for checking and up-
dating the ownership table have been added to the Xen hypervi-
sor. The rest of operations defined by Algorithm 1 are already pro-
cessed by the original Xen hypervisor. For an unmap operation,
codes for clearing the page and updating the ownership table, have
been added to Xen. For the overheads of encryption and decryp-
tion for swapping by a guest OS, we use an encryption file system,
eCryptfs, in the guest OS for swap files[16]. To evaluate the impact
of encryption for swapping, all guest swap-out operations encrypt
the victim pages.

However, the performance evaluation in this paper includes nei-
ther the performance impact for page swap by the hypervisor, nor
the costs for VM migration. In our setup, the Xen hypervisor uses
only the ballooning technique for dynamic memory management
for VMs, not supporting page swap by the hypervisor. Therefore,
the evaluation only shows the performance costs of swap by the
guest OS. Building a cloud system architecture, and evaluating the
costs of authenticated VM initiation and migration will be our fu-
ture work.

All experiments run on a quad core 2.8GHz i7 machine with
8GB DDR3 Memory. The i7 CPU supports an extensible page table
(EPT), which is a variant of nested page tables. We use Xen 4.0.1
as the hypervisor, and Ubuntu 10.04 runs on each virtual machine
as the guest operating system. We run the Xen hypervisor with
the hardware-assisted full virtualization mode. The performance
results are averaged from five runs.

In virtualized systems, page map operations occur intensively
when a VM is created, to allocate the initial memory for the new
VM. To evaluate the performance impact of extra steps of page map
operations, we use a microbenchmark, create_vm, which creates
VMs with various sizes of memory. As a VM has more memory,
more page map operations must occur.

To evaluate the effect of dynamic memory allocation for virtual
machines, we use the balloon driver for each VM. To increase dy-
namic memory allocation and deallocation rates, the balloon driver
is configured to aggressively free any unused memory pages to a
pool of free pages every five seconds. All guest VMs share the pool
of free pages, and if a VM requires more physical memory pages,
the hypervisor allows the requesting VM to use free pages in the
pool. Each guest VM is created with 4GB memory initially, but the
actual allocated physical memory for a VM changes dynamically.
The second microbenchmark, dyn_mem_alloc, repeats the allo-
cation and deallocation of 1GB memory 20 times. It allocates and
touches a 1GB memory region, and deallocates the memory. The
allocation and deallocation are repeated after a 10 second sleep pe-
riod. During the sleep period, the balloon driver in the guest VM
will deallocate unused memory pages to the free page pool.

To show the effect of dynamic memory allocation, we use two
realistic mixed workloads, each of which runs three applications.
The mix1 workload consists of kernel compile, SPECjbb 2005,
and SPECweb 2005 workloads. The kernel compile workload com-
piles Linux 2.6.38 vanilla kernel. The mix2 workload consists of

100 300 500 700
Timeline (s)

0

100000

200000

300000
#

 o
f

o
p

e
ra

ti
o

n
s

Map

Unmap
dyn_mem_alloc

100 300 500 700
Timeline (s)

mix1

100 300 500 700
Timeline (s)

mix2

Figure 7: Page map and unmap operations during the execution of workloads

512MB 1024MB 2048MB 4096MB
0.0

0.4

0.8

1.2

1.6

2.0

V
M

 C
re

a
ti
o

n
 T

im
e

 (
s
)

0 cycle

1000

2000

5000

emulated

Figure 6: VM creation times with page map overheads

dyn_mem_alloc Kernel SPECjbb SPECweb Apache VolanoMark RUBiS
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
.

P
e

rf
o

rm
a

n
c
e

1000 cycles

2000

5000

emulated

mix1 mix2

Figure 8: Performance with memory ballooning: normalized

to zero-overhead runs

Apache compile, VolanoMark [44] and RUBiS [35]. The Apache
compile workload compiles the Apache web server 2.219 version.
For the two compile workloads, the inverse of elapsed time is used
as the performance metric, and for SPECjbb2005, we use the per-
formance score as the performance metric. For SPECweb2005,
VolanoMark, and RUBiS, the average throughput is used as the
metric.

5.3 Page Map Overhead for VM Creation
We first evaluate the performance impact of page map operations

for a VM creation. The performance overhead of a page map op-
eration is due to the extra steps accessing the page ownership table
to verify each change and to update the ownership table. Figure 6
shows the total elapsed times for a VM creation, with the emulation
codes for accessing the ownership table. We also show the effect
of 1000, 2000, or 5000 extra cycles for each page map operation,
which adds fixed extra cycles instead of the emulation codes. We
use four VM types with memory sizes from 512MB to 4GB. The
VM creation time is from the initiation of a VM creation, to the
completion of VM construction. It does not include the time to ac-
tually boot the guest OS on the constructed VM. Note that in Xen,
by default, a VM is created with a large page size of 2MB for most
of its allocated memory, and large pages are broken down to smaller
4KB pages once they are reclaimed by the balloon driver. The VM
creation times increase as the memory sizes increase. However, the
emulation codes do not increase the latencies in a meaningful way.
The performance impact by the increased overhead of page map
operations is negligible. The results show that even during a VM
creation period, when page map operations occur very intensively,
the performance impact of H-SVM is negligible.

Kernel SPECjbb SPECweb Apache VolanoMark RUBiS
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
.

P
e

rf
o

rm
a

n
c
e

512MB

1024

2048

4096

Figure 9: Performance with encrypted swapping: normalized

to un-encrypted runs

5.4 Dynamic Memory Mapping Changes
Using the balloon driver in each VM, we evaluate the impact

of dynamic memory allocation and deallocation with H-SVM. Fig-
ure 7 presents the number of page map and unmap operations dur-
ing the execution of dyn_mem_alloc, mix1, and mix2. The
solid lines are the numbers of page map operations, and the dotted
lines are the numbers of page unmap operations. For all three cases,
there are some page map and unmap operations soon after the VM
creations (50-200 seconds). It is because the balloon driver on each
VM with 4GB memory releases the unused memory, and during
the release, large pages are divided into many small 4KB pages,
executing map and unmap operations. For mix1 and mix2, there
are high rates of page map operations between 300-400 seconds,
when the applications on VMs start requesting more pages. For
dyn_mem_alloc, the memory mappings for VMs change very
dynamically, as we designed the microbenchmark to generate high
rates of memory mapping changes.

However, the performance impacts by page map and unmap op-
erations are negligible for all three workloads. Figure 8 presents the
performance of each application for the three workloads. In the fig-
ure, we also evaluate fixed extra cycles of 1000, 2000, or 5000 for
map operations, to compare them against the emulated overheads.
The figure shows that the performance changes are negligible in all
the results within possible error ranges, as the performance slightly
improves or degrades in random patterns. Even for the microbench-
mark, which is designed to generate many memory allocations and
deallocations, the performance impact by page map and unmap op-
erations is negligible.

5.5 Impact of Encryption for Page Swap
Another possible performance overhead of supporting H-SVM

is the cost for encryption and description for page swaps. In this
evaluation, we assume all pages are encrypted for swap-outs, and
decrypted during swap-ins. Figure 9 presents the performance with
the swap encryption and decryption. In these runs, only one guest
VM is created, and an application runs on the VM. For each VM,
the memory size varies from 512MB to 4GB. Each bar presents the
performance normalized to an unencrypted run for each configu-
ration. As shown in the figure, the encryption for swapping does
not cause significant performance overheads, if a VM has more
than 1GB memory for our benchmark applications. Although there
are some swap operations with the memory larger than 1GB, the

performance impact for encryption is minor, as the disk latency
dominates the swap overheads. However, for SPECjbb2005, with
512MB memory, the VM is continuously swapping in and out the
memory pages because of memory thrashing. In that case, the over-
all performance can drop by as much as 53%. Such case is the worst
case scenario, when the entire system is thrashing.

6. RELATED WORK
There have been many prior studies to embed security features

into hardware processors, under the assumption that compromising
hardware components is harder than attacking software systems.
Such hardware attacks often require physical accesses to systems
as well as more sophisticated attacking methods than remote soft-
ware attacks. Prior studies for hardware-oriented protection reduce
TCB to the hardware system without software stacks, or with a thin
verifiable software layer [24, 26, 39].

The Execution-Only Memory (XOM) architecture provides the
integrity and privacy of applications with a hardware mechanism,
supporting copy and tamper-resistance[26]. A subsequent work ex-
tends the supports for copy and tamper-resistance for applications
even under an untrusted OS [25]. AEGIS supports tamper-evident
and tamper-resistant environments using a combination of secure
kernel and hardware mechanisms [39]. It proposes a broad range of
solutions, assuming either a trusted or untrusted kernel. Both XOM
and AEGIS can reduce TCB to the hardware processor and assume
that all the other system components, such as external memory,
are vulnerable. To provide solutions for attacks to the hardware
components other than the processor, the systems use sophisticated
hardware-based integrity checking and encryption mechanisms.

The Secret-Protected (SP) architecture proposes an architectural
support to protect sensitive information in applications [24]. Even
if the OS and other part of an application are untrusted, SP pro-
tects a certain part of the application space (trusted software mod-
ule). Bastion supports multiple trusted domains based on attesta-
tion mechanisms and secure storage, and protects the hypervisor
from physical attacks as well as software attacks [10]. Loki en-
forces application security policies by using a tagged memory ar-
chitecture [51]. In the tagged memory architecture, a tag associated
with a memory region carries security policies at word granularity,
and the hardware processor enforces the policies embedded in tags.

Recently, there have been several studies for software-based VM
memory protection mechanisms, relying on trusted hypervisors. In
such approaches, the hypervisor must be included in TCB. Over-
shadow uses memory shadowing to protect sensitive applications
from a malicious OS [11]. When an application is running, the
hypervisor provides the application with a normal memory view.
However, if the kernel is running, the hypervisor provides the ker-
nel with a limited memory view for applications, which shows only
the encrypted application data. SP3 uses a similar memory shad-
owing mechanism, but SP3 determines the memory view according
to the access permission set to each memory page [50].

Using virtualization techniques, systems can be divided into trusted
and untrusted compartments. The Terra system supports closed-
box virtual machines called trusted execution environments [14]. It
verifies the components of virtual machines such as the boot loader,
kernel, and sensitive applications using a trusted platform module
(TPM) at the start-up time. Proxos is similar to the Terra sys-
tem in providing isolated and trusted computing environments [41].
While Terra does not allow the use of commodity OS resources
for a trusted execution environment, Proxos supports the use of
commodity OS resources by partitioning system call interfaces and
routing system calls from a trusted VM to a normal VM.

Several recent studies discuss the vulnerability of hypervisors,

and propose solutions to improve their security. To prevent control-
flow hijacking attacks to hypervisors, Hypersafe assures the control-
flow integrity of a running hypervisor [46]. HyperSentry measures
the integrity of a running hypervisor in a stealthy way to prevent
the compromised hypervisor from disabling the integrity checking
component [8]. In the Xen hypervisor, the management domain
(domain0) often becomes the target of attacks, as it has a higher
privileged functionality than guest VMs, but has a similar vulner-
ability. Gordon divides the management domain into trusted and
untrusted components to minimize TCB [30]. Li et al. proposed a
secure VM execution environment to protect guest virtual machines
from the untrusted management domain [12]. With this scheme,
the management domain cannot access any memory of a virtual
machine after the creation of the virtual machine.

CloudVisor adds an extra software layer under a conventional
hypervisor, to protect virtual machines from a compromised hy-
pervisor [13]. This approach is similar to our proposed system,
as both systems attempt to separate critical functions of updating
security-sensitive data structures from the hypervisor. However,
CloudVisor uses a software-based approach to add an extra layer
using the current hardware support for virtualization. This paper
extends our preliminary study of hardware-based secure virtual-
ization with a detailed system architecture, cloud architecture, and
evaluation [21].

7. CONCLUSIONS
In this paper, we proposed a hardware-based mechanism called

H-SVM to isolate the memory of a VM securely even under a com-
promised hypervisor. Unlike prior hardware-based mechanisms
which support tamper-evidence or tamper-resistance for a hardware
attack, H-SVM simplifies the complexity of hardware supports sig-
nificantly by assuming a software-only threat model. We believe
this restricted threat model is appropriate in the current cloud com-
puting environments, where systems can be protected from physi-
cal intrusions in an isolated data center. We also discussed that a
virtual machine can be deployed in an authenticated manner with
the physically isolated cloud management system. The performance
evaluation by emulating the overheads in the Xen hypervisor, shows
negligible performance degradations.

8. REFERENCES
[1] Advanced Micro Devices. AMD I/O Virtualization Technology

(IOMMU) Specification, 2009.

[2] Advanced Micro Dvices. Secure Virtual Machines Architecture
Reference Manual, 2005.

[3] Advanced Micro Dvices. AMD64 Architecture Programmer’s
Mannual: Volume 2: System Programming, 2007.

[4] Advanced Micro Dvices. AMD-V Nested Paging, 2008.

[5] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2, 2008.

[6] R. Anderson and M. Kuhn. Low Cost Attacks on Tamper Resistant
Devices. In Security Protocols: 5th International Workshop, LNCS,
pages 125–136, 1997.

[7] A. M. Azab, P. Ning, E. C. Sezer, and X. Zhang. HIMA: A
Hypervisor-Based Integrity Measurement Agent. In Proceedings of

the 2009 Annual Computer Security Applications Conference,

ACSAC 2009, pages 461–470.

[8] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C.
Skalsky. HyperSentry: enabling stealthy in-context measurement of
hypervisor integrity. In Proceedings of th 17th ACM Conference on

Computer and Communications Security, CCS 2010, pages 38–49.

[9] D. J. Bernstein. Cache-timing attacks on AES. Technical report,
2005.

[10] D. Champagne and R. B. Lee. Scalable Architectural Support for
Trusted Software. In Proceedings of the 16th IEEE International

Symposium on High-Performance Computer Architecture, HPCA

2010, pages 1–12.

[11] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. K. Ports.
Overshadow: a Virtualization-based Approach to Retrofitting
Protection in Commodity Operating Systems. In Proceedings of the

13th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS 2008,
pages 2–13.

[12] A. R. Chunxiao Li and N. K. Jha. Secure Virtual Machine Execution
under an Untrusted Management OS. In In Proceedings of 2010

IEEE 3rd International Conference on Cloud Computing (CLOUD),

CLOUD 2010, pages 172–179.

[13] H. C. Fengzhe Zhang, Jin Chen and B. Zang. CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-tenant Cloud
with Nested Virtualization. In To Appear the 23rd ACM Symposium

on Operating Systems Principles, SOSP 2011.

[14] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra:
A virtual machine-based platform for trusted computing. In
Proceedings of the 19th ACM Symposium on Operating Systems

Principles, SOSP 2003, pages 193–206.

[15] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat. Difference Engine: Harnessing
Memory Redundancy in Virtual Machines. In Proceedings of the 8th

USENIX conference on Operating systems design and

implementation, OSDI’08, pages 309–322, 2008.

[16] M. A. Halcrow. eCryptfs: An Enterprise-class Cryptographic
Filesystem for Linux. In Proceedings of the Linux Symposium, Linux

05, pages 201–218.

[17] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten.
Lest We Remember: Cold-boot Attacks on Encryption Keys.
Commun. ACM, 52:91–98, May 2009.

[18] Intel. Intel Virtualization Technology for Directed I/O, 2011.

[19] Intel Corporation. Intel Advanced Encryption Standard (AES)
Instruction Set, 2011.

[20] T. Jaeger, R. Sailer, and U. Shankar. PRIMA: policy-reduced
integrity measurement architecture. In Proceedings of the 11th ACM

Symposium on Access Control Models and Technologies, SACMAT

2006, pages 19–28.

[21] S. Jin and J. Huh. Secure MMU: Architectural Support for Memory
Isolation among Virtual Machines. In Proceedings of the 7th

Workshop on Hot Topics in System Dependability, HotDep 2011.

[22] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype: virtualized
cloud infrastructure without the virtualization. In Proceedings of the

37th annual international symposium on Computer architecture,

ISCA 2010, pages 350–361.

[23] G. H. Kim and E. H. Spafford. The Design and Implementation of
Tripwire: a File System Integrity Checker. In Proceedings of the 2nd

ACM Conference on Computer and communications security, CCS

1994, pages 18–29.

[24] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang.
Architecture for Protecting Critical Secrets in Microprocessors. In
Proceedings of the 32nd annual international symposium on

Computer Architecture, ISCA 2005, pages 2–13.

[25] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an
Untrusted Operating System on Trusted Hardware. In Proceedings of

the nineteenth ACM symposium on Operating systems principles,
pages 178–192, 2003.

[26] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C.
Mitchell, and M. Horowitz. Architectural Support for Copy and
Tamper Resistant Software. In Proceedings of the ninth international

conference on Architectural support for programming languages and

operating systems, ASPLOS 2000, pages 168–177.

[27] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D. Gligor, and
A. Perrig. TrustVisor: Efficient TCB Reduction and Attestation. In
Proceedings of the 2010 IEEE Symposium on Security and Privacy,

S&P 2010, pages 143–158.

[28] R. C. Merkle. Protocols for Public Key Cryptosystems. In
Proceedings of the 1980 IEEE Symposium on Security and Privacy,

S&P 1980, pages 122–134.

[29] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman. Satori:
Enlightened Page Sharing. In Proceedings of the 2009 conference on

USENIX Annual technical conference, USENIX’09, 2009.

[30] D. G. Murray, G. Milos, and S. Hand. Improving Xen Security
through Disaggregation. In Proceedings of the fourth ACM

SIGPLAN/SIGOPS international conference on Virtual execution

environments, VEE 2008, pages 151–160.

[31] G. Neiger, A. Santoni, F. Leung, D. Rodger, and R. Uhlig. Intel
Virtualization Technology: Hardware Support for Effcient Processor
Virtualization. Intel Technology Journal, 10(03):167–178, 2006.

[32] D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and
Countermeasures: the Case of AES. In RSA Conference

Cryptographers Track, CT-RSA 2006, pages 1–20, 2005.

[33] D. Page. Defending against cache-based side-channel attacks.
Information Security Technical Report, 8:30–44, March 2003.

[34] A. G. Pennington, J. L. Griffin, J. S. Bucy, J. D. Strunk, and G. R.
Ganger. Storage-Based Intrusion Detection. ACM Transactions on

Information and System Security, 36(7):18–29, 2003.

[35] RUBiS Benchmark. http://rubis.ow2.org, 2008.

[36] Secunia Vulnerability Report: VMware ESX Server 4.x.
http://secunia.com/advisories/product/25985/,
2010.

[37] Secunia Vulnerability Report: Xen 3.x.
http://secunia.com/advisories/product/15863/,
2010.

[38] Security Is Chief Obstacle To Cloud Computing Adoption.
http://www.darkreading.com/securityservices/

security/perimeter/showArti%cle.jhtml?

articleID=221901195, 2009.

[39] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas.
AEGIS: Architecture for Tamper-evident and Tamper-resistant
Processing. In Proceedings of the 2003 International Conference on

Supercomputing, ICS 2003, pages 160–171.

[40] Survey: Cloud Computing "No Hype", But Fear of Security and
Cloud Slowing Adoption. http://www.circleid.com/
posts/20090226_cloud_computing_hype_security,
2009.

[41] R. Ta-Min, L. Litty, and D. Lie. Splitting Interfaces: Making Trust
Between Applications and Operating Systems Configurable. In
Proceedings of the 7th Symposium on Operating Systems Design and

Implementation, pages 279–292.

[42] Trusted Platform Module.
http://www.trustedcomputinggroup.org/

developers/trusted_platform_module%.

[43] VMware ESX and ESXi. http://www.vmware.com/
products/vsphere/esxi-and-esx/index.html, 2010.

[44] VolanoMark. http://www.volano.com/benchmark, 2009.

[45] C. A. Waldspurger. Memory Resource Management in VMware ESX
Server. In Proceedings of the 5th symposium on Operating systems

design and implementation, OSDI’02, pages 181–194, New York,
NY, USA, 2002. ACM.

[46] Z. Wang and X. Jiang. HyperSafe: A Lightweight Approach to
Provide Lifetime Hypervisor Control-Flow Integrity. In IEEE

Symposium on Security and Privacy, S&P 2010, pages 380–395.

[47] Z. Wang and R. B. Lee. New Cache Designs for Thwarting Software
Cache-based Side Channel Attacks. ACM SIGARCH Computer

Architecture News, 35:494–505, May 2007.

[48] Windows Azure Platform.
http://www.microsoft.com/windowsazure/, 2010.

[49] Xen Hypervisor. http://www.xen.org/, 2010.

[50] J. Yang and K. G. Shin. Using Hypervisor to Provide Data Secrecy
for User Applications on a Per-Page Basis. In Proceedings of the 4th

International Conference on Virtual Execution Environments, VEE

2008, pages 71–80.

[51] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis. Hardware
Enforcement of Application Security Policies Using Tagged
Memory. In Proceedings of the 8th USENIX Symposium on

Operating Systems Design and Implementation, OSDI 2008, pages
225–240.

