
Fast and Efficient Model Serving Using Multi-GPUs
with Direct-Host-Access

Jinwoo Jeong
Ajou University
Suwon, Korea

Seungsu Baek
Ajou University
Suwon, Korea

Jeongseob Ahn
Ajou University
Suwon, Korea

Abstract
As deep learning (DL) inference has been widely adopted for
building user-facing applications in many domains, it is in-
creasingly important for DL inference servers to achieve high
throughput while preserving bounded latency. DL inference
requests can be immediately served if the corresponding
model is already in the GPU memory. Otherwise, it needs
to load the model from host to GPU, adding a significant de-
lay to inference. This paper proposes DeepPlan to minimize
inference latency while provisioning DL models from host
to GPU in server environments. First, we take advantage of
the direct-host-access facility provided by commodity
GPUs, allowing access to particular layers of models in the
host memory directly from GPU without loading. Second,
we parallelize model transmission across multiple GPUs to
reduce the time for loading models from host to GPU. We
show that a single inference can achieve a 1.94× speedup
compared with the state-of-the-art pipelining approach for
BERT-Base. When deploying multiple BERT, RoBERTa, and
GPT-2 instances on a DL inference serving system, DeepPlan
shows a significant performance improvement compared to
the pipelining technique and stable 99% tail latency.

CCS Concepts: • Computer systems organization; • Soft-
ware and its engineering→ Software system structures;

Keywords: DNN model serving, Direct-host-access, Parallel-
transmission

ACM Reference Format:
Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn. 2023. Fast and
Efficient Model Serving UsingMulti-GPUs with Direct-Host-Access.
In Eighteenth European Conference on Computer Systems (EuroSys
’23), May 9–12, 2023, Rome, Italy.ACM, NewYork, NY, USA, 17 pages.
https://doi.org/10.1145/3552326.3567508

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’23, May 9–12, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9487-1/23/05. . . $15.00
https://doi.org/10.1145/3552326.3567508

1 Introduction
Due to the increasing demand to utilize deep neural networks
(DNNs) in many user-facing applications, it is becoming in-
creasingly important to provide deep learning (DL) inference
with low latency [8, 13, 17, 27]. To serve incoming inference
requests within the strict latency constraints (e.g., service
level objectives), a straightforward approach is to cache mod-
els in the GPU memory, as depicted in Figure 1a. However,
the downside of this approach is that inference servers need
to be over-provisioned for the peak load, increasing the op-
eration cost of servers. A promising way to reduce the cost
of GPU servers is to allow the number of models to extend
beyond the GPU memory limit [20], leading to fewer GPU
servers. Once GPU memory becomes insufficient to add a
new model, we can reclaim the GPU memory space occu-
pied by an inactive model and load the active model. If an
inference request arrives at a model not ready in the GPU
memory, it starts loading the corresponding model to GPU
on-demand [34, 37] (Figure 1b). The remaining challenge is
to minimize the (cold-start) time for loading DL models to
GPU memory, which significantly delays inference. For in-
stance, loading a BERT-Base model takes 40ms if the model
is available in host memory, while a single inference on the
model cached in the GPU memory is complete within 9.35ms
for NVIDIA V100.

A recent inspiring study presented populatingmodel trans-
mission per layer granularity [6], enabling inference to start
before the entire model is loaded, as shown in Figure 1c. This
approach hides the time for loading layers by overlapping
it with the computation. Since DNN models comprise a se-
quence of layers, we can separate the inference computation
layer-by-layer. Once the first layer is loaded, the inference
starts immediately. While performing the inference on the
first layer, it loads the next layer simultaneously. However, to
make such pipelining technique effective, it is required that
the computation time must be sufficiently longer than the
loading time. Otherwise, the computation cannot proceed
until the corresponding layer is completely loaded, called
pipeline stall. Since recent DNN models such as BERT and
GPT have large layers that take a substantial loading time, it
is challenging to fully overlap such layer loading time with
the computation.
In this study, we explore three techniques to minimize

the performance impact of loading models: executing layers

150

https://doi.org/10.1145/3552326.3567508
https://doi.org/10.1145/3552326.3567508
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3552326.3567508&domain=pdf&date_stamp=2023-05-08

EuroSys ’23, May 9–12, 2023, Rome, Italy Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn

 TLoad

Load

Exec

TExe TLoadL1

L
1Load

Exec

TExeL1

L
2

L
3

L
1

L
2

L
3

Load

Exec

TExe

(b) Non-pipeline (baseline) (c) Pipeline (a) In-memory (ideal)

request requestrequest

Stall

L
2Load

Exec

L
4

L
2

L
3

(d) Direct-host-access (DHA)

request

L
1

Execute w/ DHA

Stall

Stall

L
1

Load

Exec L
2

(e) Parallel-transmission (PT)

request

L
3

L
4

L
2

L
3

L
4

[GPU-0]

[GPU-1]

Stall

L
1

Figure 1. Previous model provisioning approaches (a, b, and c) and our approaches (d and e)

without loading, parallelizing model transmission with mul-
tiple GPUs, and automatically combining the two methods.
First, we take advantage of the direct-host-access facil-
ity that allows GPU to perform the computation on layers
residing in the host memory without loading layers to the
local GPU memory. For example, in NVIDIA GPUs, memory
allocated by cudaHostAlloc can be directly accessible from
GPU through PCIe [33]. This is similar to traditional direct
memory access (DMA). The direct-host-access facility has
not been widely used because the computation capability
can be limited by the narrow PCIe bandwidth. Interestingly,
however, we observe that in particular layers, such as em-
bedding layers of NLP and convolutional layers used in vi-
sion, direct-host-access shows faster execution time than
load-then-execute, which loads layers to the GPU and then
executes the layer computation.

This paper shows a novel use of direct-host-access to min-
imize DL inference latency while provisioning DL models
from host to GPU. Figure 1d depicts our proposal at a high
level. A straightforward approach is to replace the load-then-
execute with direct-host-access by layer-by-layer perfor-
mance comparison. However, such a simple approach does
not take into account the pipelining effect, leading to sub-
optimal performance. To this end, we introduce an algorithm
that adaptively selects the execution method. We prevent
direct-host-access to be applied for the layers whose stall
time can be hidden by pipelining. This is because direct-host-
access cannot be faster than load-then-execution where its
load time can be hidden by pipelining.
Second, we parallelize the model loading by leveraging

PCIe bandwidth to multiple GPUs. Figure 1e presents how
the latency of loading the latter part of a model can be hid-
den in two GPUs. After partitioning models to the number
of GPUs, each partition is transferred simultaneously to a
GPU through individual PCIe lanes. We call this parallel-
transmission. Like the pipeline scheme, we immediately
start inferences once the first layer of the first partition is
loaded. In this setting, there are two possible approaches for
executing inferences. First, we can support inferences for
distributed execution across GPUs. Although this approach
is simple, it pays the cost of GPU-to-GPU communication
while inferencing. Second, we can merge partitions into a sin-
gle GPU to avoid distributed execution. While executing on
the first partition, the remaining partitions are forwarded to

the GPU, where the first partition is loaded. As modern multi-
GPU servers support the additional high-speed interconnect
(e.g., NVLink) across GPUs [23, 24], the transmission from
host to GPU and the forwarding step between GPUs can also
work in a pipelined manner. Due to this reason, we take the
second approach in this study. In addition, we incorporate
the direct-host-access facility into the first partition because
the parallel transmission cannot reduce the stall time for the
first partition.
The last piece of this study is to automate the decision

on layer loading and execution. Since the number of lay-
ers in recent DNN models is steadily increasing, it poses
a challenge for ML practitioners to decide whether to use
direct-host-access by traversing all the layers manually. Also,
the parallel-transmission scheme requires users to partition
models by understanding the underlying hardware facilities
such as PCIe and NVLink topology. To tackle this problem,
we introduce a tool called DeepPlan, which automatically
generates an inference execution plan for a given model,
minimizing the inference latency to the model that is not
cached in the GPU memory. We first conduct a performance
profiling step for a given model when executing with the
local GPU memory and host memory. Second, we determine
the executionmethod for each layer by comparing the perfor-
mance difference from direct-host-access with the stall time
from the pipeline approach. Third, if we have multiple GPUs,
we partition the model evenly to the number of GPUs by
understanding the server hardware organization. Then, we
override the execution method for all the partitions except
for the first. Last, we coordinate to overlap the execution
of direct-host-access with the transmission of layers to the
GPU memory. Note that this procedure is a one-time process
before deploying a model to a new kind of GPU server and
is not required while inferencing.

We evaluate our proposed schemes on anAWS p3.8xlarge
instance. This instance has four NVIDIA V100 GPUs with
NVLink. With the guided execution from DeepPlan, we can
significantly reduce the inference latency when the model is
not pre-loaded into the GPU memory. It improves a sin-
gle inference request for BERT-Base by 1.94× compared
with the state-of-the-art scheme PipeSwitch [6]. The other
models, including ResNet, RoBERTa, and GPT-2, also show
a speedup of around 1.18~2.21× with DeepPlan. In server
environments with realistic workloads [30] that run three

151

Fast and Efficient Model Serving Using Multi-GPUs with Direct-Host-Access EuroSys ’23, May 9–12, 2023, Rome, Italy

hours, DeepPlan reduces 99% tail latency significantly. Con-
sequently, the goodput performance achieves around 99%
while PipeSwitch shows 88%.

The rest of the paper is organized as follows. Section 2
presents the background of serving DNN models and the
approaches this paper takes. Section 3 introduces the per-
formance characteristics of model execution andmodel trans-
mission. Section 4 describes the proposed design of DeepPlan,
and Section 5 evaluates DeepPlan on a multi-GPU server
with various DNN models. Section 6 discusses the prior stud-
ies, and Section 7 concludes the paper.

2 Background and Motivation
In this section, we provide background on the out-of-memory
problem in provisioning a large number of models on com-
modity GPUs and how modern DL inference servers deal
with the limited GPU memory. Then, we revisit serving DL
models with direct host memory access and parallel trans-
mission with multi-GPUs to accelerate model provisioning.

2.1 DL Model Serving
With the wide adoption of deep learning on interactive on-
line applications, DL inference servers play an important
role in the quality of user experiences and hardware resource
efficiency [8, 10, 13, 14, 29, 32]. As a result, the primary re-
quirement of the inference servers is to satisfy the target
latency while maximizing the system throughput. We de-
scribe three prior approaches in servingmodels. First, a naive
approach is to keep models in the GPU memory always, as
shown in Figure 1a. Once a DL inference request arrives at
the system, it can be immediately served with low latency.
In this setting, we can judiciously increase the number of
models to share a single GPU with spatial sharing. For exam-
ple, the NVIDIA Triton inference server provides the facility
to deploy multiple models on a single GPU to increase the
concurrency. At the peak load, such spatial sharing can fully
utilize the hardware resource by executing multiple models
in parallel. However, this approach results in the underuti-
lization of GPUs on average and low load [13, 29].
Second, to achieve high resource efficiency, we can take

the time-sharing technique on GPUs by multiplexing a large
number of models as on-demand. Figure 1b presents an in-
ference execution after loading the corresponding model to
the GPU memory from host. Such a time-sharing approach
can increase the model consolidation ratio by swapping in-
active models out to the host memory and swapping the
active requested models in the GPU memory. However, such
on-demand model provisioning can impose an additional la-
tency to inference due to loading a model to GPU via narrow
PCIe bandwidth. This is called cold-start. Such consider-
able loading time is a major contributor to increasing the tail
latency of inference.

ResNet-50 BERT-Base RoBERTa
Large

GPT-2 Medium
0%

20%

40%

60%

80%

100%

In
fe

re
nc

e
la

te
nc

y
(%

)

27%

73% 75%

37%

Stall Execution

Figure 2. Decomposition of inference latency spent by
pipelining [6]

Lastly, to remedy the performance overhead of loading
models, Bai et al. introduced a pipelining technique to accel-
erate inference while provisioning models. Figure 1c shows
the pipeline model transmission per layer granularity [6].
The inference computation does not need to wait until the
whole set of layers is loaded into the GPU memory. Instead,
it can start the computation as early as possible when the
first layer becomes ready in the GPU. While performing the
computation for the first layer, it loads the second layer si-
multaneously, hiding the load latency. However, it is required
that the computation time is sufficiently longer than the load-
ing time. Otherwise, the computation cannot proceed due to
dependency.
To investigate the efficiency of the pipelining approach,

we measure the inference execution time while loading the
model to GPU. Figure 2 decomposes the inference latency
into the GPU execution time and stall time for batch size 1.
Even with the pipelining technique, inference performance
is limited by the pipeline stalls. The inference execution
is frequently stalled across all the models. For BERT and
RoBERTa models, the stall time accounts for 73~75% because
of large embedding layers. ResNet and GPT show less stall
than BERT, but they still occupy around 27~37%.

2.2 Direct Host Memory Access from GPUs
To minimize the effect of the loading time when dealing with
an inference request, we take a different approach to directly
accessing the layers that resided in host memory without
loading to the GPU memory, called direct-host-access.
Commodity GPUs provide a facility for directly accessing
the host memory (e.g., cudaHostAlloc). It is analogous to
direct-memory-access (DMA) between the main memory
and peripheral devices of the system.

Figure 3 shows the comparison between the explicit copy
with cudaMemcpy and zero-copy with cudaHostAlloc. Al-
though the explicit copy can utilize the abundant local mem-
ory bandwidth, the direct-host-access operation opens up

152

EuroSys ’23, May 9–12, 2023, Rome, Italy Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn

Memory

PCIe

Host memory

1
cudaMalloc

2 cudaMemcpy

Memory

Host memory
cudaHostAlloc

GPU GPU
3 2

1

(a) Explicit copy (b) Direct-host-access

Figure 3. Two different execution types

new opportunities to serve layers (or models) on GPUs. First,
it enables GPUs to serve models that reside in the host mem-
ory, not the GPU memory. Second, we can load only par-
ticular layers that show significant performance benefits
on the GPU. Note that existing DL frameworks, such as
TensorFlow [5], PyTorch [26], and TVM [7], and prior stud-
ies [6, 8, 13] do not leverage the direct-host-access facility.

2.3 Parallel Model Transmission with Multi-GPUs
As a single server supports multiple GPUs, it opens up a new
opportunity to parallelize the model transmission across
GPUs. Figure 4 presents distributing a partitioned DL model
across two GPUs. While loading the first partition of the
model to GPU-0, we can transmit the second partition to
GPU-1 simultaneously (1 of Figure 4). In this regard, we can
support inferences for distributed execution (i.e., model par-
allelism) with the cost of GPU-to-GPU communication. How-
ever, this can pose additional latency even for in-memory
executions and performance interference across GPUs.

Instead, we can merge the divided partitions into the GPU
that has the first partition. Since modern GPUs support a
high-speed interconnect such as NVLink for accelerating
GPU-to-GPU communication [23], we can accelerate trans-
ferring the second partition to that GPU (2 of Figure 4).
Although the NVLink facility is widely used for multi-GPU
DL training, we can repurpose the existing hardware feature
for provisioning DL models. This study focuses on the latter
approach merging partitions.

3 Performance Analysis for Model
Execution and Provisioning Methods

This section analyzes the performance impacts of the (1)
direct-host-access facility in executing layers and the (2)
parallel-transmission scheme in loading models. Our ex-
periments run on an NVIDIA V100 GPU connected through
PCIe 3.0. The host CPU is Intel Xeon Gold 6230R. We use
PyTorch v1.9 with popular DNN models.

Memory

GPU-0

Memory

GPU-1

Host memory

PCIe

L1 L2 L3 L4 L5 L6

2

1

L1 L4

Model

NVLink

1

Figure 4.Model provisioning with two GPUs

3.1 Load-then-execute vs. Direct-host-access
There is a trade-off between the load-then-execute and
direct-host-access approaches. Although the time for
loading layers can account for a significant portion of the
total inference time in load-then-execute, GPUs can accel-
erate the remaining computation with the local memory
accesses. By contrast, the direct-host-access facility does not
pay the cost of loading layers, but it slows down the inference
execution due to host memory accesses through the PCIe
interconnect. Figure 5 presents the measured execution time
for embedding, convolutional, and fully connected lay-
ers by load-then-execute and direct-host-access, respectively.
We select the layers from BERT-Base [9] and ResNet-50 [18]
models. The input for each layer is identical to batch size 1.
For direct-host-access, wemodified PyTorch to use cudaHost-
Alloc instead of loading the layers with cudaMemcpy.

Embedding layer:We first observe that direct-host-access
can be an alternative to load-then-execute in embedding
layers. Figure 5a exhibits that direct-host-access shows bet-
ter performance than load-then-execute in two embedding
layers from BERT-Base. When the size of embedding layers
is pretty large (e.g., 89.4MB out of 417MB in BERT-Base),
it contributes a significant portion (hatched) to the model
loading time. Since a single inference request incurs only
a small number of sparse memory accesses for the embed-
ding layers, applying the load-then-execute scheme to the
large embedding layers is not a cost-effective way. Instead,
we advocate leaving such large embedding layers on the
host memory. Although it increases the execution time for
taking the embeddings, a considerable loading time can be
eliminated, leading to the total latency improvement.

Convolutional layer: Figure 5b shows three different sizes
of convolutional layers used in ResNet-50. For small- and
medium-size layers, the performance difference between the
two approaches is negligible. In such a case, we propose
to use direct-host-access. It allows us to save the loading
time and then utilize the time to load subsequent layers of

153

Fast and Efficient Model Serving Using Multi-GPUs with Direct-Host-Access EuroSys ’23, May 9–12, 2023, Rome, Italy

Small
(0.006MB)

Medium
(1.50MB)

Large
(89.42MB)

(a) Embedding

0.0

0.2

0.4 ~
Small

(0.016MB)
Medium
(2.25MB)

Large
(9.0MB)

(b) Convolutional

0.0

0.5

1.0

1.5

2.0

Small
(2.25MB)

Large
(9.01MB)

(c) Fully connected

0.0

2.5

5.0

7.5

10.0

12.5

8.4

8.6

8.8

~

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
tim

e
(m

s)
Load-then-execute Direct-host-access

Figure 5. Layer performance comparison (In load-then-execute, the lower hatched part indicates the loading time and the
upper part presents the execution time.)

models in advance. However, as the size of the convolutional
layer increases, the performance gap is widening. In direct-
host-access, the memory access through PCIe becomes a
performance bottleneck. Thus, we need to decide whether
to use either direct-host-access or load-then-execute by un-
derstanding the performance benefits. CNN models place
the small convolutional layers in the front of models, and
the size of convolutional layers is steadily increasing toward
the back of models. We can handle the front convolutional
layers of the model with direct-host-access while loading
large convolutional layers simultaneously. Then, we can hide
the time of loading large convolutional layers.

Fully-connected layer: Figure 5c presents the performance
of fully connected (FC) layers with load-then-execute and
direct-host-access. For both small and large sizes, load-then-
execute outperforms direct-host-access. Unlike the convolu-
tional layers, even the small layer exhibits a large amount
of memory access. Therefore, direct-host-access for fully
connected layers can affect the execution time negatively.
Specifically, the self-attention of BERT-Base computes the
key, value, and query for each token of an input sequence. As
a result, the FC layers are iteratively reused for completing
all the sequences. Due to this memory reuse characteristic,
load-then-execute can amortize the cost of loading the lay-
ers while direct-host-access pays the memory access cost
through PCIe every time it accesses. Note that data accessed
through direct-host-access is not copied to the GPU memory.
We can conclude that load-then-execute is much faster than
direct-host-access due to the dense and reuse memory access
characteristics.

Other layers:Although Figure 5 does not include the perfor-
mance results for batch normalization (BatchNorm) and layer
normalization (LayerNorm), these layers are also frequently
used in CNN and Transformermodels. For BatchNorm, direct-
host-access shows better performance than load-then-execute.
However, for LayerNorm, the opposite is shown.

Figure 5 Load Direct-host-access

(a) Embedding Medium (1.50MB) 24,580 18,267
Large (89.42MB) 1,465,112 18,459

(b) Convolutional Medium (2.25MB) 36,869 65,891
Large (9.0MB) 147,465 273,487

(c) Fully Small (2.25MB) 36,920 446,276
connected Large (9.01MB) 147,660 1,765,787

Table 1. Comparison for the number of PCIe events: load
vs. direct-host-access

Changes in the Number of PCIe Accesses: To further
understand the performance difference between load-then-
execute and direct-host-access, we measure the number of
PCIe accesses between the two execution methods. We uti-
lize the hardware performance counters (PCIeRdCur) for
profiling layers used in Figure 5. To accurately profile the
events, we insert the measurement code in libTorch with the
PCM library1. Table 1 compares the number of PCIe accesses
when loading the layer and using direct-host-access.

When loading a layer, the number of PCIe accesses is
proportional to the size of the layer. Since the payload size
in transferring through PCIe is 64B (cache-line size), the
number of PCIe accesses is that the layer size is divided by
64B. For embedding layers, the direct-host-access scheme can
significantly reduce the number of PCIe accesses compared
with loading the entire layer because all the embeddings
are not used in the inference phase. On the other hand, in
the convolutional and fully-connected layers, we observe a
different behavior, as depicted in Figure 5. The direct-host-
access scheme shows more PCIe accesses than loading the
layer. This is expected because the convolutional and linear
layers reuse the tensor in the host memory to compute the
output. In such layers, the load-then-execute scheme can
amortize the cost of loading the entire parameters of layers.

1https://github.com/opcm/pcm

154

EuroSys ’23, May 9–12, 2023, Rome, Italy Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn

ResNet-50 BERT-Base RoBERTa
Large

GPT-2 Medium
0%

20%

40%

60%

80%

100%

No
rm

al
ize

d
m

od
el

 lo
ad

in
g

tim
e

to
 se

ria
l (

%
)

Serial (1)
Parallel (2)

Parallel-pipeline (2)
Parallel-pipeline (4)

Figure 6. Model loading time: serial vs. parallel (The
numbers in parentheses indicate the number of used GPUs.)

Figure 6 Average PCIe bandwidth (GB/s)

Serial (1) Parallel-pipeline (2) Parallel-pipeline (4)

ResNet-50 9.10 9.13 7.01
BERT-Base 10.87 10.67 5.89
RoBERTa-Large 10.94 10.75 6.01
GPT-2 Medium 11.52 11.32 5.96

Table 2. Average PCIe bandwidth when using serial and
parallel transmissions

3.2 Model Transmission: Serial vs. Parallel
Beyond single GPUs, we evaluate the effectiveness of par-
allel model transmission through the individual PCIe lanes
attached to each GPU. Figure 6 presents the completion time
loading each model from host memory to a target GPU. We
divide models into two partitions evenly in terms of size.
First, the serial approach transfers the models directly from
the host to one GPU in the server. Second, in the case of
parallel, we transfer two partitions of a model to each
GPU in parallel. Then, we forward the second partition to
the target GPU through NVLink indirectly. This parallel
scheme reduces the transfer time by around 30~45% com-
pared to serial. Third, we add the pipeline feature to the
parallel mode, called parallel-pipeline. Once the first
layer of the second partition is loaded, it is immediately trans-
ferred to the target GPU. This further reduces the time for
model transmission by almost half in transformer models.
For ResNet, it reduces the loading time by about 40%.
When using four GPUs, the parallel approach shows a

small performance benefit for the transformer models. Ta-
ble 2 shows the average PCIe bandwidth across GPUs. Our
machine is with PCIe 3.0, providing up to 15.75GB/s theoreti-
cally. With four GPUs, the bandwidth reduces almost by half.
This degradation comes from the PCIe contention by GPUs
attached to the same PCIe switch [36]. In modern multi-GPU
servers, there are eight GPUs, and every two GPUs share the
same PCIe switch [16]. In other words, even with two GPUs,
the performance improvement depends on which two GPUs
are used for parallelization. When parallelizing the model
transmission, we need to understand such PCIe topology.

 StallL1

Load

Exec

request

L2

Load

Exec L2

L2

L2

 Exe(DHA)L1

P
ip

e
lin

e
O

u
r

a
p
p
ro

a
c
h Gain

L1
 = Stall

L1
-PerfDiff

L1

L1

L1

L1

 Exe(InMem)L1

PerfDiff
L1

= Exe(DHA)L1 - Exe(InMem)L1

Figure 7. Acceleration of 𝐿1 execution with direct-host-
access

In ResNet-50, we observe that the PCIe is not effectively
utilized due to the transmission of a large number of small
layers. The PCIe contention with four GPUs is less severe
than other transformer models.

4 DeepPlan
Based on the performance characterization in the previous
section, we introduce our two designs to reduce the pipeline
stall with direct-host-access on particular layers of models
and parallel model transmission with multiple GPUs. These
two approaches accelerate inference while provisioningmod-
els from host to GPU memory. Last, we propose a tool, called
DeepPlan, which automatically generates an inference exe-
cution plan for server environments by incorporating the
two techniques.

4.1 Leveraging Direct-Host-Access
Our approach is to take advantage of the direct-host-access
(DHA) facility to replace the load-then-execute part of the
pipeline scheme. We can apply direct-host-access to the lay-
ers that exhibit better performance than load-then-execute
through the layer-by-layer performance comparison. The
direct-host-access facility brings two advantages. Figure 7
and 8 show the two cases of how direct-host-access can
effectively reduce the stall time. First, as depicted in Fig-
ure 7, the pipeline execution for 𝐿1 is stalled due to the de-
pendency. On the other hand, we can avoid the stall time
by changing the execution of 𝐿1 with direct-host-access
(hatched box). In addition, we can start loading the fol-
lowing layer 𝐿2 (dotted box). We define the performance
difference between direct-host-access and in-memory ex-
ecutions as 𝑃𝑒𝑟 𝑓 𝐷𝑖 𝑓 𝑓𝐿𝑛 = 𝐸𝑥𝑒 (𝐷𝐻𝐴)𝐿𝑛 − 𝐸𝑥𝑒 (𝐼𝑛𝑀𝑒𝑚)𝐿𝑛 .
If 𝑃𝑒𝑟 𝑓 𝐷𝑖 𝑓 𝑓𝐿𝑛 > 0, we represent the performance gain as
𝐺𝑎𝑖𝑛𝐿𝑛 = 𝑆𝑡𝑎𝑙𝑙𝐿𝑛 − 𝑃𝑒𝑟 𝑓 𝐷𝑖 𝑓 𝑓𝐿𝑛 . In this example, direct-host-
access for 𝐿1 is shorter than that of load-then-execute. It
means there is a performance gain (𝐺𝑎𝑖𝑛𝐿1 > 0). Such a
performance characteristic can be observed in embedding
layers of transformer models and convolutional layers of
vision models (see Section 3.1).

155

Fast and Efficient Model Serving Using Multi-GPUs with Direct-Host-Access EuroSys ’23, May 9–12, 2023, Rome, Italy

Load

Exec

 StallLn

P
ip

e
lin

e

Exe(InMem)Ln-1

Ln-2
Ln-3 LnLn-1

Ln-1 Ln

Load

Exec Ln-2
Ln-3 Ln

 Gain
Ln

 = Load
Ln-1

O
u
r

a
p
p
ro

a
c
h

Ln-1

 Exe(DHA)Ln-1

Exe(DHA)Ln-1 - Exe(InMem)Ln-1

= PerfDiffLn-1

Ln

Figure 8. Stall reduction of loading 𝐿𝑛 execution with
direct-host-access

Second, we apply direct-host-access to the layers that can
reduce the pipeline stalls of the following layers. Figure 8
illustrates that the pipeline execution does not entirely hide
the loading time of 𝐿𝑛 . However, we have the opportunity to
reduce the stall time of 𝐿𝑛 by changing the execution method
for previous layers (𝐿𝑛−1, 𝐿𝑛−2, ...). Once we execute 𝐿𝑛−1
with direct-host-access (hatched box), the loading time of
𝐿𝑛−1 disappears. Even though direct-host-access can increase
the execution time of a given layer, it can advance the load-
ing of the following layers early by eliminating the loading
time itself. Then, we can use the saved time to start loading
𝐿𝑛 (dotted box) early, leading to the stall time reduction.
The amount of performance gain (𝐺𝑎𝑖𝑛𝐿𝑛) is the eliminated
loading time of 𝐿𝑛−1.
However, since changing the execution of 𝐿𝑛−1 to direct-

host-access cannot eliminate the stall time of 𝐿𝑛 , we can
additionally utilize 𝐿𝑛−2 to reduce the remaining stall time
further. Once a previous layer cannot eliminate the stall time
of a given layer, we attempt to leverage another previous
layer until the stall time can be eliminated or there are no
previous layers. When selecting a previous layer, we choose
the layer that shows the smallest 𝑃𝑒𝑟 𝑓 𝐷𝑖 𝑓 𝑓 first among the
earlier layers. For example, instead of 𝐿𝑛−1, we can utilize the
𝐿𝑛−2 layer if 𝑃𝑒𝑟 𝑓 𝐷𝑖 𝑓 𝑓𝐿𝑛−2 < 𝑃𝑒𝑟 𝑓 𝐷𝑖 𝑓 𝑓𝐿𝑛−1 . The rationale be-
hind is that the smaller the performance difference between
the two execution methods, the more the stall time of sub-
sequent layers is reduced while minimizing the negative
performance impact on the target previous layer.

4.2 Leveraging Parallel Model Transmission
To further reduce the stall time of loading models, we par-
allelize the model transmission by using multiple GPUs
in the same server. Figure 9 depicts the advantage of our
parallel-transmission scheme with two GPUs. Note that
our approach is not limited to two GPUs. For the paralleliza-
tion, we take advantage of the map-reduce concept. In the
map phase, we divide a given model into the number of GPUs
participating in the parallel transmission. Each partition is
copied to the corresponding GPU through individual PCIe
lanes in parallel. While transferring the first partition from 𝐿2

Load
(GPU-0: primary)

Exec
(GPU-0: primary)

L
2

L
1

L
4

L
2

L
3

L
7

L
5

L
6

Load
(GPU-1: secondary)

L
7

L
5

L
6

L
3

L
4

L
5

L
6

 Exe(DHA)L1

 Stall

 Stall

Layer

forwarding

Figure 9. Cooperative parallel-transmission with
direct-host-access to accelerate model provisioning

to 𝐿4 to GPU-0, the second partition from 𝐿5 to 𝐿7 is loaded to
GPU-1 simultaneously. This example shows that 𝐿1 is chosen
for direct-host-access.
Suppose the GPU that holds the first partition is the pri-

mary GPU, and the others are secondary GPUs. Then, in
the reduce phase, each secondary GPU forwards its own
partition to the primary GPU through NVLink. In that exam-
ple, the layers (𝐿5 to 𝐿7) on GPU-1 are migrated to GPU-0.
As NVLink provides an additional path and high-speed in-
terconnects to PCIe, we can overlap the reduce phase with
the transmission for the first partition. While copying 𝐿3
from host to GPU-0 through PCIe, it transfers 𝐿5 from GPU-
1 to GPU-0 through NVLink. It can effectively eliminate the
stall time, as shown in Figure 9. To support the parallel-
transmission scheme, we reserve a small amount of memory
for storing layers temporarily on each GPU.

In the case of the first partition, the parallel-transmission
does not reduce the stall time at all. Instead, we still have
an opportunity to utilize our direct-host-access approach to
the first partition to reduce the pipeline stalls. These two
techniques can complement each other.

Meanwhile, as discussed in Section 3.2, GPUs attached to
the same PCIe switch do not show the performance benefit
for parallel-transmission due to the PCIe bandwidth con-
tention from the host. Thus, it is required to utilize GPUs
attached to the different PCIe switches. Also, the parallel-
transmission scheme can incur performance interference to
secondary GPUs serving other models. Fortunately, how-
ever, we do not see that the interference becomes severe
(Section 5).

4.3 Generating Execution Plans Automatically
To apply direct-host-access to layers of models, it is required
for ML practitioners to profile the performance of models
per layer granularity and then extract the inference exe-
cution plan by understanding the performance benefit of
direct-host-access for each layer. Also, the number of GPUs
participating in the parallel-transmission depends on the un-
derlying hardware where the models are served. As modern
DNN models and GPU servers are becoming diverse and

156

EuroSys ’23, May 9–12, 2023, Rome, Italy Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn

Layer
Execution
Planner

Layer
Performance

Profiler
Execution

engine

Inference server
DNN

Model

#Layer DHA

1 1.2

2 1.8

InMem

0.4

0.5

1.0

1.2

Load

3 1.6

4 1.7

0.4

0.6

1.0

1.1…

Extracting performance numbers

#Layer

1

2

Load ?

X

O

3

4

O

X

…

Applying direct-
host-access

L2

Load

Exec
GPU-0

L3

L2 L3

StallL3

Final model execution

1 2

Model
Transmission

Planner
3

Target GPU

0

0

0

#Layer

1

2

Load ?

X

O

3

4

O

O

…

Applying parallel
transmission

L4 L5

L4 L5

L1

[GPU-1]

[GPU-0]

 Exe(DHA)L1

4

1

Figure 10. DeepPlan: system support for generating model execution plans

complex, we introduce a tool that automatically generates
the inference execution plan for a given server environment.
This section presents the design of our proposed tool,

called DeepPlan. Figure 10 shows the overall process of how
it works. DeepPlan takes a pre-trained DL model as an in-
put. Note that it does not require any intervention from ML
practitioners. 1 For a given model, it profiles the runtime
performance of individual layers. From a pre-run, we can
measure the execution time for two methods, DHA and in-
memory, and the loading time for each layer. 2 The profiled
information will be given to our layer execution planner as
inputs, and it identifies which layer has the pipeline stall
and attempts to reduce the stall with direct-host-access. This
is an iterative process until all the layers are examined. In
this example, layer 1 (𝐿1) and 4 (𝐿4) are selected for direct-
host-access. 3 If the server has multiple GPUs, it applies
the parallel-transmission scheme across the GPUs by under-
standing the PCIe interconnect. In this example, it overrides
the execution method for 𝐿4 to be loaded to the other GPU.
Note that we do not statically assign the GPU. This is an
example to help readers understand. 4 Once DeepPlan gen-
erates the inference execution plan, it is ready to be deployed
into the serving systems. Since 𝐿1 is executed with direct-
host-access, we start loading 𝐿2 on GPU-0 to reduce the stall
time. At the same time, 𝐿4 is loaded to GPU-1 and then for-
warded to GPU-0 in the pipelined manner. Consequently, our
proposed techniques can accelerate the inference execution
upon a cold-start.

4.3.1 Performance Profiling of Individual Layers. For
a given model, the first step is to collect the performance
statistics from load-then-execute and direct-host-access by
performing inferences on an actual system where the model
will be deployed. Although we can have an analytic model
to avoid the profiling step for each model, such a pre-run is
practical and provides a robust decision for diverse server
environments. Note that this procedure is a one-time process
before deploying a model. From this pre-run, we construct
the performance table, including the pipeline stall for each

layer, depicted in Figure 10. These are fed into our plan
generator. We discuss the performance overhead of profiling
in Section 5.2.

Algorithm 1 Generating a layer execution plan
1: for each layer 𝑖 in 1, ..., 𝑛 do
2: if 𝑆𝑡𝑎𝑙𝑙𝐿𝑖 > 0 then
3: # Step 1: Make a list of candidate layers by sorting from

4: # 𝑃𝑒𝑟 𝑓 𝐷𝑖 𝑓 𝑓 in ascending order
5: 𝑠𝑜𝑟𝑡𝑒𝑑𝐿𝑎𝑦𝑒𝑟𝑠 ← 𝑆𝑜𝑟𝑡𝐵𝑦𝑃𝑒𝑟 𝑓 𝐷𝑖 𝑓 𝑓 (𝐿1 to 𝐿𝑖)
6: for each sorted layer 𝑗 in 1, ..., 𝑖 do
7: # Step 2: Check whether 𝐿𝑗 can contribute to reducing

8: # stall of 𝐿𝑖
9: if 𝑆𝑡𝑎𝑙𝑙𝐿𝑖 < 𝑃𝑒𝑟 𝑓 𝐷𝑖 𝑓 𝑓𝐿𝑗

then 𝑏𝑟𝑒𝑎𝑘

10: # Step 3: Change for 𝐿𝑗 to use direct-host-access and

11: # update the stall time of 𝐿𝑖
12: 𝐶ℎ𝑎𝑛𝑔𝑒𝑇𝑜𝐷𝑖𝑟𝑒𝑐𝑡𝐻𝑜𝑠𝑡𝐴𝑐𝑐𝑒𝑠𝑠(𝐿𝑗)
13: 𝑆𝑡𝑎𝑙𝑙𝐿𝑖 ← (𝑆𝑡𝑎𝑙𝑙𝐿𝑖 − 𝐿𝑜𝑎𝑑𝐿𝑗

− 𝑃𝑒𝑟 𝑓 𝐷𝑖 𝑓 𝑓𝐿𝑗
)

14: # Step 4: Update pipeline execution when the stall time

15: # is eliminated
16: if 𝑆𝑡𝑎𝑙𝑙𝐿𝑖 ≤ 0 then
17: 𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚(𝐿𝑗)
18: 𝑏𝑟𝑒𝑎𝑘

4.3.2 Layer Execution Planning. Given a profiled layer-
wise performance information, Algorithm 1 describes how
our planner decides whether individual layers need to be
loaded to the GPUmemory or can be kept in the hostmemory
for direct-host-access. The goal is to reduce the stall time
for each layer. In Step 1, we find candidate layers that are
placed before the given layer 𝐿𝑖 , and direct-host-access is
not applied yet. To visit the most effective layer to reduce
the stall, the selected layers from 𝐿1 to 𝐿𝑖 are sorted by the
performance difference between the two execution methods
in ascending order. Again, the smaller the difference, the
more the stall time can be reduced. While traversing the
sorted layers (line 6), we attempt to minimize the stall
time of 𝐿𝑖 . In Step 2, we determine whether the previous

157

Fast and Efficient Model Serving Using Multi-GPUs with Direct-Host-Access EuroSys ’23, May 9–12, 2023, Rome, Italy

layer 𝐿 𝑗 can contribute to reducing the stall time. If 𝑆𝑡𝑎𝑙𝑙𝐿𝑖
is larger than the performance difference 𝐸𝑥𝑒 (𝐷𝐻𝐴)𝐿𝑗

−
𝐸𝑥𝑒 (𝐼𝑛𝑀𝑒𝑚)𝐿𝑗

, it indicates that we can reduce the stall by
changing the execution type for 𝐿 𝑗 to direct-host-access. It
allows us to start loading layer 𝐿𝑖 in advance. Otherwise,
we cannot reduce the stall of 𝐿𝑖 so that we move on to the
next layer 𝐿𝑖+1 (break at line 9). Since the previous layers
are sorted by 𝑃𝑒𝑟 𝑓 𝐷𝑖 𝑓 𝑓 , we do not need to check the next
sorted layer 𝐿 𝑗+1. In Step 3, we record the changed decision
for 𝐿 𝑗 and update the stall time to reflect the performance
gain by omitting the load time 𝐿𝑜𝑎𝑑𝐿𝑗

and by the changed
execution time with direct-host-access 𝑃𝑒𝑟 𝑓 𝐷𝑖 𝑓 𝑓𝐿𝑗

. In Step
4, we check whether the stall time is eliminated. If so, we
profile the performance of the new execution plan to get the
correct stall time for the subsequent layers and move on to
the next layer 𝐿𝑖+1. Otherwise, we go to Step 2 to reduce the
remaining stall of 𝐿𝑖 by the next sorted layer 𝐿 𝑗+1.

4.3.3 Model Transmission Planning. In this stage, we
equally partition a given model into the number of GPUs
participating in the parallel-transmission. To select the GPUs,
we need to understand how GPUs are laid out in the PCIe
switches of the server to avoid bandwidth contention while
loading in parallel. Next, we check whether the selected
GPUs are connected through NVLink. If not, we do not en-
able the parallel-transmission. Although we could support
the inference execution across GPUs, this option has not
been considered due to the performance interference to other
inference requests.
Once we decide to apply this parallel-transmission, we

change the execution method for layers belonging to the
second and later partitions to be loaded. While planning,
we do not designate the GPUs for parallel-transmission.
The number of secondary GPUs depends on the number
of PCIe switches. In a p3.8xlarge instance, there are two
PCIe switches, and each of them serves two GPUs. DeepPlan
guides us to use up to two GPUs out of four for the parallel-
transmission at once.

4.3.4 Model Execution Coordination. Once the infer-
ence execution plan is made, the last step is coordinating the
layer load and execution timing. This is a relatively simple
task. Our execution engine is an extension of PyTorch v1.9.
We use two separate GPU streams to load layers while ex-
ecuting layers with direct-host-access simultaneously. The
load stream copies selected layers sequentially according
to the plan. If the execution plan is enabled with parallel-
transmission, we create an additional migration stream on
each secondary GPU for migrating the partitions to the pri-
mary GPU. To optimize data transfers from the host to GPU,
we allocate the pinned memory for the layers. For layers exe-
cuted by direct-host-access, we add a new memory allocator
in PyTorch that allocates memory through cudaHostAlloc.

Due to the dependency between the load and computation
for layers, the execution stream needs to check whether the

corresponding layer is completely loaded. To simplify the
synchronization, the load stream andmigration stream insert
a CUDA event through cudaEventRecord() after transmit-
ting each layer. Then, the execution stream simply identi-
fies the event status through cudaStreamWaitEvent(). Note
that if the layer is executed by direct-host-access, we can
skip the dependency check process.

5 Evaluation
5.1 Experimental Setup
We implement the layer profiler and execution planner as a
standalone Python tool. The execution engine provides five
execution options: Baseline (non-pipeline), PipeSwitch [6],
and our three designs of DeepPlan, direct-host-access (DHA)
parallel transmission (PT), and integration of the two (PT+DHA).
To evaluate DL inference performance, we use a p3.8xlarge
instance in AWS which has four NVIDIA V100 (16GB) GPUs
with NVSwitch. The server instance has a Xeon E5-2686 v4
CPU with 32 virtual CPUs and 244GB of memory. We use Py-
Torch v1.9, CUDA 11.3, and a set of representative pre-trained
DNN models: ResNet-50 and ResNet-101 from TorchVi-
sion [1] and BERT-Base, BERT-Large, RoBERTa-Base, RoBER-
Ta-Large, GPT-2, and GPT-2 Medium fromTransformers [35].
We use a synthetic dataset for all the benchmark inputs.
ResNet uses 224×224 RGB images. The sequence length for
BERT and RoBERTa models is 384 while GPT-2 is 1,204. Our
artifact is available at https://github.com/csl-ajou/DeepPlan.

5.2 Inference Performance
In this section, we evaluate the performance of a single infer-
ence request when models are not loaded in GPU memory.
Then, we assess the performance impact of DeepPlan in serv-
ing scenarios where GPU memory is not sufficient to serve
a number of models.

Single inference with batch size 1. The inference requests
upon the model not resided in the GPU memory are signif-
icantly delayed due to the time spent on loading layers of
models from the host to the GPU memory. We first evaluate
the inference latency for a single batch. Figure 11 exhibits
the relative speedup of our three designs of DeepPlan and
the state-of-the-art pipeline execution called PipeSwitch [6]
normalized to Baseline, which loads the model from the
host memory to the GPU memory and then executes the in-
ference when handling a single inference request. We report
the inference latency averaged on 100 runs with error bars.

1 Single GPU: DeepPlan (DHA) outperforms PipeSwitch
across all the models we evaluate. For ResNet-50 and 101,
the speedup improvement is 1.01~1.03× over PipeSwitch.
Since the pipelining approach reduces the stall time effec-
tively for the image classification models, the performance
improvement is not significant. Table 3a shows part of the

158

EuroSys ’23, May 9–12, 2023, Rome, Italy Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn

ResNet-50 ResNet-101 BERT-Base BERT-Large RoBERTa
Base

RoBERTa
Large

GPT-2 GPT-2 Medium
0.0
0.5
1.0
1.5
2.0
2.5

In
fe

re
nc

e
sp

ee
du

p
Baseline PipeSwitch DeepPlan (DHA) DeepPlan (PT) DeepPlan (PT+DHA)

Figure 11. Performance comparison of DeepPlan and previous studies (batch size: 1)

Layer #: Name

63: BN 64: ReLU 65: Conv 66: BN 67: ReLU 68: Conv 69: BN

Initial approach X X X X X O X

DeepPlan (DHA) X X O X X O X

(a) ResNet-101: layers of a middle part

Layer #: Name

0: Emb 1: Emb 2: LN 3: FC 4: FC

X X O O O

X O O O O

(b) GPT-2: front first 5 layers

Table 3. Part of generated execution plans (O: load, X: direct-host-access) [Conv: Convolutional, BN: BatchNorm, Emb:
Embedding, LN: LayerNorm, FC: Full connected]

execution plans for DeepPlan (DHA). According to the layer-
by-layer performance comparison (the Initial-approach
row), direct-host-access for the 65th convolutional layer
shows better performance than load-then-execute so that
DeepPlan initially decides not to load the layer on GPU. How-
ever, by considering the pipeline effect, it makes a different
decision. This is because the loading time of the convolu-
tional layer can be hidden by the computation of precedent
layers.

For transformer models, the speedup is around 1.10~1.43×
compared to PipeSwitch. DeepPlan (DHA) accelerates the
execution for embedding layers with direct-host-access as
shown in Table 3b. While executing the embedding layers
without loading, it can simultaneously load fully connected
layers behind the embeddings. Therefore, it can reduce the
stall time of loading fully connected layers. In GPT-2 with
a larger sequence length, the pipelining technique can ef-
fectively reduce the stalls because the computation time is
relatively longer than BERT and RoBERTa models.

2 DualGPUs:To evaluate the parallel-transmission scheme,
DeepPlan (PT), we use two GPUs in the server. First, our PT
shows better performance than PipeSwitch for all the mod-
els. For ResNet-50, BERT, and RoBERTa, PT presents a more
reduced execution time than DHA. It improves the inference
latency by 1.09~1.44× compared to DHA. With PT, we observe
that the stalls incurred in the latter part of the models are
eliminated. On the other hand, both parallel-transmission
(PT) and direct-host-access (DHA) show a similar improve-
ment for ResNet-101. In GPT-2 models, the performance

PipeSwitch (1) PT+DHA (1) PT+DHA (2)

ResNet-50 12.03 8.93 11.97
ResNet-101 19.85 17.71 21.19
BERT-Base 40.51 20.88 30.45
BERT-Large 122.37 70.56 108.16
RoBERTa-Base 45.86 20.83 34.48
RoBERTa-Large 129.58 70.26 107.87
GPT-2 48.41 33.38 35.98
GPT-2 Medium 134.10 101.83 112.71

Table 4. Increased inference execution time (milliseconds)
from parallel-transmission

improvement is not shown. PT loads all the layers rather
than leaving certain layers in the host. Thus, it cannot re-
duce the stall time for embedding, convolutional, and layer
normalization layers in the first partition.
Second, we can further decrease the inference execution

time across all the models by integrating direct-host-access
on top of parallel transmission (PT+DHA). The individual tech-
niques complement each other to reduce the stall time.While
direct-host-access reduces the stall time for the first partition,
parallel-transmission hides the loading time of the remain-
ing partitions. For RoBERTa-Base, it improves the inference
latency by 2.21× compared to PipeSwitch. Also, BERT-Base
and BERT-Large models present a 1.94× and 1.74× speedup,
respectively.

Interference from parallel-transmission. If two GPUs
perform the parallel-transmission (PT) simultaneously, they
can interfere with each other. Table 4 presents the perfor-
mance interference effects on the two GPUs. The numbers

159

Fast and Efficient Model Serving Using Multi-GPUs with Direct-Host-Access EuroSys ’23, May 9–12, 2023, Rome, Italy

0
2
4
6
8

10
12
14

ResNet-50

0
1
2
3
4
5
6
7

BERT-Base

1 2 4 8
Batch size

0
1
2
3
4
5
6
7

RoBERTa-Large

1 2 4 8
Batch size

0

1

2

3
GPT-2 Medium

Baseline PipeSwitch DeepPlan (PT+DHA)

No
rm

al
ize

d
th

ro
ug

hp
ut

 to
 b

as
el

in
e

(b
at

ch
: 1

)

Figure 12. Throughput improvement with batching 1 to 8

in parentheses indicate the number of DL instances deal-
ing with the cold-starts. PT+DHA(1) shows the performance
when there is no interference whereas PT+DHA(2) is config-
ured for each GPU to run the inference with DHA at the
same time. For PT+DHA(2), we average the execution time
from the two GPUs. Each GPU runs the same model depicted
in the first column. Although the performance of PT+DHA is
affected when the two GPUs handle the cold-starts simulta-
neously, it is still faster than PipeSwitch.

Batching inference. We perform a performance sensitivity
study by varying the batch size from 1 to 8 to see the exten-
sibility of our DeepPlan. Figure 12 presents the throughput
improvement by batching and compares performance with
Baseline and PipeSwitch. We normalize the throughput
to Baseline with batch size 1. For all the models, DeepPlan
(PT+DHA) still achieves the best throughput. In ResNet-50,
our PT+DHA shows 1.12~1.26× throughput improvement over
PipeSwitch for all batch sizes. For BERT-Base, RoBERTa-
Large, and GPT-2 Medium, as the batch size increases, the
throughput differences between DeepPlan (PT+DHA) and Pipe-
Switch become narrow. This is because batching increases
the computation time that can have more opportunity to

Profiling time

DHA In-memory Layer load Total

ResNet-50 2.28s 0.44s 1.20s 3.92s
BERT-Base 7.99s 0.41s 4.00s 12.40s
RoBERTa-Large 63.61s 0.95s 11.31s 75.87s
GPT-2 Medium 28.1s 1.69s 11.02s 40.81s

Table 5. Time (seconds) spent in profiling models with 10
iterations

0

100

200

300

99
 %

 la
te

nc
y

(m
s)

Target SLO

BERT-Base

40

60

80

100

Go
od

pu
t (

%
)

20 40 60 80 100 120 140 160 180 200
of model instances (concurrency)

0

20

40

60

Co
ld

-s
ta

rt
(%

)

PipeSwitch DeepPlan (DHA) DeepPlan (PT+DHA)

Figure 13. 99% latency (top), goodput rate (middle), and cold-
start rate (bottom) while increasing the number of instances
beyond GPU memory limit

overlap the pipeline stalls than non batching. Note that batch-
ing is not recommended for the most latency-sensitive work-
loads while provisioning models due to the cold-start latency
violating the strict target latency (SLO) [34, 37].

Profiling cost. The profiling phase is required for DeepPlan
to determine the layer execution method. It profiles the time
for executing layers with direct-host-access and in-memory
settings and also for loading layers from host to GPU. To
attain stable results in profiling, we measure the time with
several iterations. We empirically set the number of itera-
tions. Table 5 presents the time spent in profiling the models
with 10 iterations. The last column (Total) is the sum of
the three costs. The profiling cost depends on the size of the
models and the execution time of the models. Note that this
is only required once before deploying models.

5.3 Performance of Serving Models with DeepPlan
In this section, we evaluate tail latency and goodput for both
synthetic and real-world workloads. Goodput is the number
of requests satisfying the target SLO. For this evaluation, we
use all four GPUs in the server. As Clockwork [13], our exe-
cution engine is designed for each GPU to run one inference
request at a time. PipeSwitch deals with the cold-starts for
each GPU individually. For the parallel-transmission, Deep-
Plan guides us to use up to two GPUs per model in the given
server. Each of the two GPUs can run the model transmission
simultaneously, as explained in the previous section, even
though it can cause PCIe contention.

160

EuroSys ’23, May 9–12, 2023, Rome, Italy Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn

5 10 15 20 25 30 35 40 45 50 550

200

400

600

800

99
 %

 la
te

nc
y

(m
s)

BERT-Large

20 40 60 80 100 120 140 160 180 200
of model instances (concurrency)

0

200

400

600

800

99
 %

 la
te

nc
y

(m
s)

GPT-2

PipeSwitch DeepPlan (DHA) DeepPlan (PT+DHA)

Figure 14. 99% latency for BERT-Large and GPT-2 (The re-
quests per second are set to 30 and 90, respectively)

5.3.1 Synthetic workloads. Figure 13 exhibits 99% la-
tency, goodput, and cold-start of BERT-Base while increas-
ing the number of instances concurrently running on the
GPUs. Each instance mimics a model corresponding to a
different user or service. After warming up the instances
presented on the x-axis, we measure performance for 1,000
requests. For generating a realistic request arrival pattern,
we use Poisson distributions [13, 14, 27], which are widely
used to evaluate interactive web services. We maintain 100
requests per second, which are randomly distributed across
all the instances. For example, at concurrency 100 (x-axis),
each instance serves approximately 1 request per second. We
increase the number of models (concurrency) by 20.
At concurrency 120, PipeSwitch starts to increase 99%

latency significantly. On the other hand, our DeepPlan (DHA)
exhibits stable 99% latency until concurrency 160. In the
case of DeepPlan (PT+DHA), we can serve up to 180 instances
while satisfying the target SLO (100ms). As a result, PT+DHA
can achieve stable goodput performance by concurrency 180.
At concurrency 180, our PT+DHA improves goodput by 1.84×
compared to PipeSwitch. When having a relatively tight
target SLO such as 50ms, at concurrency 120, PipeSwitch
starts violating the SLO, increasing the 99% latency to around
94ms. On the other hand, DeepPlan (PT+DHA) shows that it
can handle requests within 35ms even at concurrency 140.

DeepPlan can reduce the required GPU memory space
for models by placing selected layers such as embedding on
the host memory. PipeSwitch can keep up to 100 instances
across the four GPUs while DeepPlan serves 24 instances
more. As shown in the bottom of Figure 13, our approach

6000

8000

10000

Of
fe

re
d

lo
ad

 (r
eq

./m
in

.)

0

200

400

99
 %

 la
te

nc
y

 (m
s)

60

80

100

Go
od

pu
t

 (%
)

0 30 60 90 120 150 180
Time (minutes)

0

10

20

Co
ld

-s
ta

rt
 (%

)

PipeSwitch DeepPlan (DHA) DeepPlan (PT+DHA)

Figure 15. Performance of real-world trace (3 hours)

can delay occurring the cold-start. While serving more than
100 (124 in DeepPlan) instances, the number of cold-start
is increasing. To evict an instance due to the lack of GPU
memory, we select the least recently used instance.

Figure 14 presents 99% latency for BERT-Large and GPT-2.
We use 30 and 90 requests per second for BERT-Large and
GPT-2, respectively because they spend more execution time
and cold-start latency than BERT-Base in inferencing a re-
quest. Our DeepPlan significantly improves the tail latency
over PipeSwitch. In GPT-2, however, the latency gap be-
tween DHA and PT+DHA is not noticeable. This is because
PT+DHA has a narrow lead over DHA for a single batch as
shown in Figure 11. We also evaluated the other models
and observed a similar improvement trend over PipeSwitch.
Due to the limited space, we omit their results in this paper.

5.3.2 Real-world workloads. We evaluate our DeepPlan
by replaying a real-world workload trace of Microsoft Azure
Functions (MAF) [30]. Like the previous study [13], we deal
with anAzure function invocation as anDL inference request.
By scaling down the trace for our evaluation environment,
we extract unique function IDs from the trace and map each
function to a DL model. It represents a diverse range of
workloads such as heavy sustained requests, fluctuations
in request rates, and spikes in requests. We deploy three
types of DL models, including BERT-Base, RoBERTa-Base,
and GPT-2, on the server. The number of instances follows
about a 4:4:1 ratio. By replaying 3 hours of the MAF trace
in real-time, we measure the performance of 99% latency,
goodput, and cold-start.
Figure 15 exhibits performance of PipeSwitch and two

designs of DeepPlan for the real-world trace. We present
the offered load to across models as time goes by at the

161

Fast and Efficient Model Serving Using Multi-GPUs with Direct-Host-Access EuroSys ’23, May 9–12, 2023, Rome, Italy

ResNet-50 BERT-Base RoBERTa
Large

GPT-2 Medium
0.0

0.5

1.0

1.5

2.0

In
fe

re
nc

e
sp

ee
du

p

Baseline PipeSwitch DeepPlan (PT+DHA)

Figure 16. Inference speedup on a different system equipped
with two NVIDIA RTX A5000 GPUs with PCIe 4.0

top of the figure. To stress the inference server, we set the
requests per second to 150. Our DHA and PT+DHA show im-
proved 99% latency and stable goodput results compared to
PipeSwitch. In many cases, DeepPlan handles inferences
under 100ms while PipeSwitch takes more than 150ms. The
goodput result is based on when configuring the target SLO
to 100ms. The two designs of DeepPlan achieve 98~99% good-
put while PipeSwitch is around 81~98%. With PipeSwitch,
we need to have more GPUs or less load (e.g., requests per
second) to satisfy the target latency. Meanwhile, we observe
a few latency spikes in the 9th and 67th minutes, even with
DeepPlan. Note that such a phenomenon does not persist.

5.4 Inference Performance with PCIe 4.0
In addition to the inference performance shown in Figure 11,
we include an additional evaluation to see the reproducibility
for generating the execution plan by DeepPlan on a different
system. According to GPU computational capabilities, the
execution plan can be changed between load-then-execute
and direct-host-access. Since the server has two NVIDIA
RTX A5000 GPUs with NVLink, we can utilize the parallel-
transmission feature. Note that the GPUs are attached to the
system through PCIe 4.0.

Figure 16 presents the relative speedup for batch size 1 and
shows the similar improvement trend observed in Section 5.2.
Although the newer generation of PCIe can reduce the stall
time for transferring models from host to a GPU, our two
designs of DeepPlan still show improved performance.

6 Related Work
There have been significant efforts throughout architecture,
system, and ML community to improve the performance of
latency from hardware to software optimization.

DL serving systems. The primary design goal of building
DL serving systems in practice is to meet a strict latency re-
quirement (e.g., SLO) and then maximize the system through-
put under the given SLO budget. Prior studies mainly focused
on improving resource utilization by sharing GPUs timely
and spatially with sophisticated scheduling, placing, and co-
ordinating inference queries while not violating the target
SLOs [8, 10, 14, 29, 32]. However, such previous work did

not consider the case where DL models need to be loaded
in the GPU memory while serving inferences. Also, most of
the open-source serving systems, such as TF Serving [25],
TorchServe [3], and Triton [2], delegate control of loading
and unloading models on GPUs to developers.

On the other hand, we can find a different approach, allow-
ing the number of DL models beyond the GPU memory limit.
However, a new challenge is to address the cold-start prob-
lem [34, 37] when loading models from host to GPU. When
building cloud-based applications such as AWS Lambda, we
need to minimize the performance impact of the cold-start
latency, affecting the quality of user experiences. If you lever-
age the cloud DNN serving systems, Amazon SageMaker or
Google AI Platform, it is known that the inference latency
suffers from the cold-start latency. Recently, Bai et al. in-
troduced pipelining model transmission to hide the latency
of loading models from the host to the GPU memory [6].
Compared with that, DeepPlan takes a different approach,
accelerating the model serving with the direct-host-access
facility [4]. To the best of our knowledge, there are no prior
studies leveraging the zero-copy approach for inference. In-
stead of loading layers, we choose the best placement strat-
egy for each layer and load selected layers by understanding
the performance critically in given models.

Lightweight inference. Pruning and quantization have
been widely explored to make the computation lightweight
and reduce the size of models [15]. TVM optimizes given DL
models to a specific hardware by fusing operators, making
models lightweight [7]. By leveraging TVM, Clockwork im-
plements a runtime system serving DL models [13]. Also, the
hardware community has introduced specialized DL accel-
erators such as Brainwave [12] and TPU [20, 21], which are
tailored for particular layer operations such as convolutional
or fully connected layers with different floating-point for-
mats [11, 19]. By sacrificing the inference accuracy, Zhang
et al. introduced a model switching scheme from complex
to lightweight models at high load [38]. However, such solu-
tions are orthogonal to the space DeepPlan explored.

Newhardware features.Min et al. [22] leveraged the direct-
host-access scheme manually for training large graph net-
works, while DeepPlan automatically generates efficient ex-
ecution plans for DL inferences. DeepPlan considers the
performance benefits of the pipeline approach and oppor-
tunistically applies the direct-host-access scheme to reduce
the pipeline stall. In addition, this study shows that direct-
host-access can have a synergy effect with the parallel trans-
mission for accelerating model provisioning. As the NVLink
facility is introduced for accelerating GPU-to-GPU commu-
nication in multi-GPU workloads, modern GPU servers have
supported the hardware feature by default [23, 24]. Even
desktop GPUs such as NVIDIA RTX 3090 can exploit the
high-speed GPU interconnect with NV Bridge. In this study,
we leveraged NVLink to make the model provisioning fast.

162

EuroSys ’23, May 9–12, 2023, Rome, Italy Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn

7 Conclusions and Future Work
This paper introduced DeepPlan, an inference execution
planner that minimizes the performance penalty when load-
ing models from host to GPU. Our main technical contribu-
tion is to exploit the performance benefits of the direct-host-
access and parallel-transmission schemes for accelerating in-
ference performance while provisioning models from host to
GPU. We achieved significant speedup for inferences across
all the models and showed the effectiveness of reducing tail
latency and improving throughput in model serving systems.
In future work, we envision how our approach can be

utilized in other cases. For instance, DeepPlan can allow in-
ferences to models which are not fit in single GPU memory.
Since the model size is steadily growing, it is increasingly
challenging to cache a model entirely on GPU. Although
we may use multiple GPUs for hosting a large model en-
abled with pipeline parallelism [28], DeepPlan can be a cost-
effective alternative for such large models.

In addition, we anticipate that DeepPlan can be extended
for mixture of experts (MoE) [31]. In MoE models, all the
layers of the model are not required for a given input be-
cause each input needs to take an expert. Once we are able to
identify the required expert for a given forward pass, Deep-
Plan could effectively reduce the time spent of transferring
models.

Acknowledgments
We thank our shepherd Tim Harris and anonymous review-
ers for their valuable comments and feedback. This work
was supported by Institute of Information & communica-
tion Technology Planning & Evaluation(IITP) grant (No.
2020-0-00844, Development of Lightweight System Software
Technology for Resource Management and Control of Edge
Server Systems) and the ITRC(Information Technology Re-
search Center) support program(2021-0-02051). Both grants
are funded by the Ministry of Science and ICT, Korea.

References
[1] 2017. TorchVision. https://pytorch.org/vision.
[2] 2018. NVIDIA Triton. https://developer.nvidia.com/nvidia-triton-

inference-server.
[3] 2020. TorchServe. https://pytorch.org/serve.
[4] 2021. NVIDIA CUDA Toolkit Documentation (v11.3.0). https://docs.

nvidia.com/cuda/cuda-c-best-practices-guide/.
[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A System for Large-Scale Machine Learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

[6] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020. PipeSwitch: Fast
Pipelined Context Switching for Deep Learning Applications. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

[7] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Au-
tomated End-to-End Optimizing Compiler for Deep Learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

[8] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency
Online Prediction Serving System. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers).

[10] Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. 2020.
GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference
Platform. In Proceedings of the 11th ACM Symposium on Cloud Com-
puting (SoCC).

[11] Mario Drumond, Tao Lin, Martin Jaggi, and Babak Falsafi. 2018. Train-
ing DNNs with Hybrid Block Floating Point. In Proceedings of the
32nd International Conference on Neural Information Processing Systems
(NeurIPS).

[12] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Mas-
sengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,
Logan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam
Sapek, Gabriel Weisz, Lisa Woods, Sitaram Lanka, Steven K. Reinhardt,
Adrian M. Caulfield, Eric S. Chung, and Doug Burger. 2018. A Config-
urable Cloud-Scale DNN Processor for Real-Time AI. In Proceedings
of the 45th Annual International Symposium on Computer Architecture
(ISCA).

[13] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs like
Clockwork: Performance Predictability from the Bottom Up. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

[14] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Bran-
don Reagen, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and
Carole-Jean Wu. 2020. DeepRecSys: A System for Optimizing End-
to-End at-Scale Neural Recommendation Inference. In Proceedings
of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA).

[15] Song Han, Huizi Mao, and William J Dally. 2016. Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained Quanti-
zation and Huffman Coding. In Proceedings of the 4th International
Conference on Learning Representations (ICLR).

[16] Mark Harris. 2017. NVIDIA DGX-1: The Fastest Deep Learning Sys-
tem. Available at https://developer.nvidia.com/blog/dgx-1-fastest-
deep-learning-system/.

[17] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha
Smelyanskiy, Liang Xiong, and Xiaodong Wang. 2018. Applied Ma-
chine Learning at Facebook: A Datacenter Infrastructure Perspective.
In Proceedings of the IEEE International Symposium onHigh Performance
Computer Architecture (HPCA).

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[19] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2016. Binarized Neural Networks. In Proceedings of the
30th International Conference on Neural Information Processing Systems
(NeurIPS).

163

https://pytorch.org/vision
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://pytorch.org/serve
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://developer.nvidia.com/blog/dgx-1-fastest-deep-learning-system/
https://developer.nvidia.com/blog/dgx-1-fastest-deep-learning-system/

Fast and Efficient Model Serving Using Multi-GPUs with Direct-Host-Access EuroSys ’23, May 9–12, 2023, Rome, Italy

[20] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
Thomas B. Jablin, George Kurian, James Laudon, Sheng Li, Peter
Ma, Xiaoyu Ma, Thomas Norrie, Nishant Patil, Sushma Prasad, Cliff
Young, Zongwei Zhou, and David Patterson. 2021. Ten Lessons From
Three Generations Shaped Google’s TPUv4i : Industrial Product. In
ACM/IEEE 48th Annual International Symposium on Computer Archi-
tecture (ISCA).

[21] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-
ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-
nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew
Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan,
Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA).

[22] Seung Won Min, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun
Xiong, Eiman Ebrahimi, Deming Chen, andWen-mei Hwu. 2021. Large
Graph Convolutional Network Trainingwith GPU-Oriented Data Com-
munication Architecture. Proc. VLDB Endow. 14, 11 (jul 2021), 14 pages.

[23] NVIDIA. 2019. NVIDIA DGX-2: The World’s Most Powerful AI System
for the Most Complex AI Challenges. Available at https://www.nvidia.
com/en-us/data-center/dgx-2/.

[24] NVIDIA. 2020. NVIDIA HGX A100: The Most Powerful
End-to-End AI Supercomputing Platform. Available at
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/HGX/a100-80gb-hgx-a100-datasheet-us-nvidia-1485640-r6-
web.pdf.

[25] Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan Soyke, Kiril
Gorovoy, Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar.
2017. TensorFlow-Serving: Flexible, High-Performance ML Serving.
InWorkshop on ML Systems at NIPS 2017.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In
Proceedings of the 33rd International Conference on Neural Information
Processing Systems (NeurIPS).

[27] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien
Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody
Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick,
J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff
Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton
Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin
Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip
Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson,
Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George
Yuan, Aaron Zhong, Peizhao Zhang, and Yuchen Zhou. 2020. MLPerf
Inference Benchmark. In Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA).

[28] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
2021. ZeRO-Offload: Democratizing Billion-Scale Model Training. In
Proceedings of the 2021 USENIX Annual Technical Conference (ATC).

[29] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos
Kozyrakis. 2021. INFaaS: Automated Model-less Inference Serving. In
Proceedings of the 2021 USENIX Annual Technical Conference (ATC).

[30] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical Conference (ATC).

[31] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis,
Quoc Le, Geoffrey Hinton, and Jeff Dean. 2017. Outrageously Large
Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer. In
Proceedings of the 5th International Conference on Learning Representa-
tions (ICLR).

[32] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.
Nexus: A GPU Cluster Engine for Accelerating DNN-Based Video
Analysis. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP).

[33] Hans-Nikolai Vießmann and Sven-Bodo Scholz. 2020. Effective Host-
GPU Memory Management Through Code Generation. In Proceedings
of the 32nd Symposium on Implementation and Application of Functional
Languages (IFL).

[34] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In Proceedings of the 2018 USENIX Annual Technical Conference
(ATC).

[35] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf,
Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Syl-
vain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush.
2020. Transformers: State-of-the-Art Natural Language Processing.
In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations.

[36] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-
vathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, Fan Yang, and Lidong Zhou. 2018. Gan-
diva: Introspective Cluster Scheduling for Deep Learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

[37] Chengliang Zhang, Minchen Yu, WeiWang, and Feng Yan. 2019. MArk:
Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine
Learning Inference Serving. In Proceedings of the 2019 USENIX Confer-
ence on Usenix Annual Technical Conference (ATC).

[38] Jeff Zhang, Sameh Elnikety, Shuayb Zarar, Atul Gupta, and Siddharth
Garg. 2020. Model-Switching: Dealing with Fluctuating Workloads in
Machine-Learning-as-a-Service Systems. In 12th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud).

A Artifact Appendix
A.1 Abstract
Our artifact includes (1) the DeepPlan tool generating the
inference execution plans for given DNN models, (2) the
libTorch execution engine guided by the generated plans,
and (3) the DL inference server prototype powered by our
libTorch engine. We also include the DNN workloads used
in our paper and script files to set up and test our artifact.

164

https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/HGX/a100-80gb-hgx-a100-datasheet-us-nvidia-1485640-r6-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/HGX/a100-80gb-hgx-a100-datasheet-us-nvidia-1485640-r6-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/HGX/a100-80gb-hgx-a100-datasheet-us-nvidia-1485640-r6-web.pdf

EuroSys ’23, May 9–12, 2023, Rome, Italy Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn

A.2 Description & Requirements
A.2.1 How to access. The DeepPlan artifact is available
at https://github.com/csl-ajou/DeepPlan. The README.md in
the repository includes all the required steps and detailed
instructions to build, run, and reproduce our results.

A.2.2 Hardware dependencies. To evaluate the func-
tionality of our proposed schemes, a multi-GPU server (at
least two more GPUs) is required. This paper used an AWS
p3.8xlarge instance equippedwith four NVIDIAV100GPUs
connected through NVLinks2. Specifically, the DeepPlan (PT)
scheme needs two more GPUs to parallelize the model trans-
mission across GPUs. On the other hand, DeepPlan (DHA) is
still effective in a single GPU system.

A.2.3 Software dependencies. Weevaluated our schemes
on the Ubuntu 18.04 distribution and the required software
packages are CUDA 11.3, cuDNN 8.2.1, ProtoBuf 3.11.4, Py-
Torch 1.9, Boost 1.65, and TBB 2017 U7.

A.2.4 Benchmarks. We used representative pre-trained
DNNmodels: ResNet-50, ResNet-101, BERT-Base, BERT-Large,
RoBERTa-Base, RoBERTa-Large, GPT-2, and GPT-2 Medium.
The benchmark inputs are a synthetic dataset.

A.3 Set-up
Please refer to the README.md file in the artifact repositories
for detailed environment set-up instructions and how to run
the experiments to reproduce the key results.

A.4 Evaluation workflow
A.4.1 Major Claims. We claim that DeepPlan minimizes
the performance overhead of inferencing when models are
not ready in the GPU memory. By alleviating the perfor-
mance penalty induced by model transmission from host to
GPU memory, DeepPlan is able to achieve high throughput
(goodput) while preserving the bounded latency (SLO).

C1: When executing a DL inference request on a GPU, we
suggested that all the layers for a given DL model are not
needed to be in the GPU memory. DeepPlan (DHA) enables
GPUs to perform the computation on layers in the host mem-
ory, eliminating the time for transmitting the layers to the
GPU memory. This is proven by the experiment (E1) de-
scribed in Section 5.2, whose results are illustrated in Fig-
ure 11. The DeepPlan (DHA) legend represents the relative
speedup from the baseline.

C2: To accelerate the model transmission time from host to
GPU, we claim that leveraging multiple GPUs can parallelize
the model transmission through individual PCIe lanes of
each GPU. This claim is supported by the experiment (E2)
described in Section 5.2, and the DeepPlan (PT) in Figure 11

2We tested our code on two NVIDIA A5000 GPUs with NVLink.

exhibits performance improvement compared to the base-
line and DeepPlan (DHA). DeepPlan (PT+DHA) presents the
performance numbers when integrating DHA and PT schemes.

C3: By leveraging the proposed schemes in DL model serv-
ing systems, we can improve the throughput (and goodput)
while preserving the bounded latency of DL models. This
is validated in both synthetic and realistic server workloads
described in Section 5.3 and proven by the experiments (E3)
and (E4), respectively.

A.4.2 Experiments. Detailed instructions on how to pre-
pare the environment used by this paper and how to repro-
duce the results are found in README.md.

Experiment (E1): [DeepPlan (DHA)] [30 minutes] This exper-
iment produces the results of DeepPlan (DHA) in Figure 11.
We provide a script file, scripts/fig10/run.sh, to auto-
mate the steps. It runs a single inference with batch size 1
for our baseline and the pipeline scheme [6] to measure the
latency. For DeepPlan (DHA), it generates an execution plan,
runs the inference with the plan, and produces a graph file.

Experiment (E2): [DeepPlan (PT)] [30 minutes] This experi-
ment produces the results of DeepPlan (PT) in Figure 11. For
the parallel-transmission scheme, the server system needs to
have twomoreGPUs at least. Like above, the scripts/fig10/
run.sh file helps to run, measure, and produce the latency
result of a single inference with batch size 1. In addition,
we include the latency numbers when integrating the two
schemes, DeepPlan (PT+DHA), in Figure 11.

Experiment (E3): [DeepPlan Server (Synthetic)] [4 hours]
This experiment produces the results in Figure 13 and 14. We
perform this experiment on a four-GPU server in an AWS in-
stance. This experiment measures the 99% latency, goodput,
and cold-start for three workloads, BERT-Base, BERT-Large,
and GPT-2, while increasing the number of model instances
concurrently running on the GPUs. The provided script files,
scripts/fig12/run.sh and scripts/fig13/run.sh, pro-
duce graphs by automating the required steps. Note that
Figure 13 and 14 are the same type of evaluation but differ-
ent benchmark models. Figure 14 omits the result of goodput
and cold-start ratio.

Experiment (E4) [DeepPlan Server (real-world)] [9 hours]
This experiment is similar to Experiment (E3), but it runs
with a real-world trace derived from Microsoft Azure Func-
tions [30]. We scale down the traces for a four-GPU server
environment. The adjusted traces can be found in our artifact
repository and scripts/fig14/run.sh replays the traces
and produces graphs in Figure 15.

165

https://github.com/csl-ajou/DeepPlan

Fast and Efficient Model Serving Using Multi-GPUs with Direct-Host-Access EuroSys ’23, May 9–12, 2023, Rome, Italy

A.5 Notes on Reusability
To leverage DeepPlan on different hardware environments,
it is required to tune the request rate so that the inference

server can show reasonable throughput numbers while sat-
isfying the target latency.

166

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DL Model Serving
	2.2 Direct Host Memory Access from GPUs
	2.3 Parallel Model Transmission with Multi-GPUs

	3 Performance Analysis for Model Execution and Provisioning Methods
	3.1 Load-then-execute vs. Direct-host-access
	3.2 Model Transmission: Serial vs. Parallel

	4 DeepPlan
	4.1 Leveraging Direct-Host-Access
	4.2 Leveraging Parallel Model Transmission
	4.3 Generating Execution Plans Automatically

	5 Evaluation
	5.1 Experimental Setup
	5.2 Inference Performance
	5.3 Performance of Serving Models with DeepPlan
	5.4 Inference Performance with PCIe 4.0

	6 Related Work
	7 Conclusions and Future Work
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 Notes on Reusability

