
Accelerating Critical OS Services in Virtualized Systems with
Flexible Micro-sliced Cores

Jeongseob Ahn
Ajou University
jsahn@ajou.ac.kr

Chang Hyun Park
KAIST

changhyunpark@calab.kaist.ac.kr

Taekyung Heo
KAIST

tkheo@calab.kaist.ac.kr

Jaehyuk Huh
KAIST

jhhuh@kaist.ac.kr

ABSTRACT
Consolidating multiple virtual machines into a single server has
been widely adopted in cloud computing to improve system uti-
lization. However, the sharing of physical CPUs among virtual
machines in consolidated systems poses a new challenge in pro-
viding an illusion of continuous CPU execution to the guest op-
erating systems (OS). Due to the time-sharing of physical CPUs,
the execution of a guest OS is periodically interrupted, while the
guest OS may not be aware of the discontinuity of virtual time
against the real time. The virtual time discontinuity problem causes
the delayed processing of critical OS operations, such as interrupt
handling and lock processing. Although there have been several
prior studies to mitigate the problem, they address only a subset
of symptoms, require the modification of guest OSes, or change
the processor architecture. This paper proposes a novel way to
comprehensively reduce the inefficiency of guest OS execution in
consolidated systems. It migrates the short-lived critical OS tasks
to dedicated micro-sliced cores, minimizing the delays caused by
time sharing. The hypervisor identifies the critical OS tasks without
any OS intervention, and schedules the critical code sections onto
the dynamically partitioned cores at runtime. The dedicated micro-
sliced cores employ a short sub-millisecond quantum to minimize
the response latencies for consolidated virtual machines. By read-
ily servicing the critical tasks, the proposed scheme can minimize
the adverse artifact of virtual machine consolidation without any
modification of guest OSes.

CCS CONCEPTS
• Software and its engineering→ Virtual machines; Scheduling;
• Computer systems organization→ Cloud computing;

KEYWORDS
Virtualization, Virtual Time Discontinuity, Scheduling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys ’18, April 23–26, 2018, Porto, Portugal
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00
https://doi.org/10.1145/3190508.3190521

ACM Reference Format:
Jeongseob Ahn, Chang Hyun Park, Taekyung Heo, and Jaehyuk Huh. 2018.
Accelerating Critical OS Services in Virtualized Systems with Flexible Micro-
sliced Cores. In Proceedings of Thirteenth EuroSys Conference 2018 (EuroSys
’18). ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3190508.
3190521

1 INTRODUCTION
In cloud computing, the consolidation of multiple virtual machines
(VMs) with fluctuating loads reduces the computing cost by im-
proving the overall system utilization. However, in such virtualized
systems, guest operating systems often suffer from the scheduling
artifact of virtualization. Operating systems have been designed
to run directly on the hardware system, fully controlling the un-
derlying CPU resources. However, in virtualized systems, physical
CPUs (pCPUs) are time-shared by multiple virtual CPUs, and thus
the execution of guest operating systems can be interrupted by the
CPU scheduling decision of the hypervisor.

This problem, known as the virtual time discontinuity problem,
has been reported to cause significant inefficiency in highly consoli-
dated systems [2, 7, 10, 14, 26, 28, 33]. It causes the delays of critical
OS services in several aspects. First, it can delay critical kernel syn-
chronizations implemented with spin locks. Second, inter-processor
interrupts (IPI) are not immediately transferred to the destination
cores, delaying interactions among kernel threads. Third, exter-
nal interrupts for I/O processing are not served promptly as the
virtual CPUs (vCPUs) to process them are not readily scheduled.
Delaying such critical OS services significantly reduces the overall
throughput of consolidated systems.

To mitigate the effect of the virtual time discontinuity problem,
there have been several prior approaches. Scheduling-oriented ap-
proaches attempt to assign pCPUs as quickly as possible to the vC-
PUs processing the critical guest OS services, if the hypervisor can
identify the events involvedwith kernel synchronization [10, 14, 26].
The scheduling quantum between context switches is shortened
to more frequently schedule vCPUs onto the pCPUs, although
it can potentially degrade the performance due to direct context
switch overheads and cache pollution [2, 28, 34]. However, the
prior approaches address only part of the virtual time discontinuity
problem [10, 14, 26, 33], require changes in guest OSes [33], need
HW support [2], or cannot handle the case when a VM has mixed
behaviors that require both short and long time slices [7, 28].

This paper proposes a new holistic approach to address the
virtual time discontinuity problem, comprehensively addressing

https://doi.org/10.1145/3190508.3190521
https://doi.org/10.1145/3190508.3190521
https://doi.org/10.1145/3190508.3190521

EuroSys ’18, April 23–26, 2018, Porto, Portugal J. Ahn et al.

vTurbo [33] Demand-sched [14] Fixed-µsliced [2] vTRS [28] vScale [7] Our scheme

Inter-processor interrupt ✓ ✓ ✓ ✓ ✓
I/O interrupt ✓ ✓ ✓ ✓ ✓
I/O + CPU mixed ✓ ✓ ✓
Lock holder preemption ✓ ✓ ✓ ✓ ✓
Precise selection ✓ ✓ ✓ ✓
Guest OS transparency ✓ ✓ ✓ ✓
No additional hardware ✓ ✓ ✓ ✓ ✓

Table 1: Comparing Flexible Micro-sliced Cores with prior approaches

different aspects of the problem. The hypervisor transparently iden-
tifies the critical guest OS services without any modification of
guest OSes, and accelerates the critical OS services on a subset
of cores with sub-milliseconds time slices. Dedicating a subset of
cores to serve critical guest OS services allows rapid processing of
the critical code section. Furthermore, the dedicated micro-sliced
cores employ an extremely short time slice of 0.1ms to minimize the
response time for OS services. The kernel services are commonly
short-lived, and processed within the short time slices. Even if many
consolidated virtual machines demand to process their OS services,
the micro-sliced kernel cores process them quickly without being
hampered by the rest of user-level application activities.

When dedicating some cores for such critical OS services, an
important challenge is to prevent wasting CPU resources. If the
critical OS services are not invoked, the reserved cores will be idle,
lowering the overall CPU utilization, delaying user applications. To
accommodate such potentially fluctuating demands for the micro-
sliced cores, this paper proposes a dynamic mechanism to adjust
the number of micro-sliced cores based on the usage of the critical
OS services.

The proposed micro-sliced cores differ from the prior approaches
in several aspects. First, it can address the virtual time discontinuity
problem in all three aspects, including synchronization, IPI, and
external I/O handling. Second, it does not require modifications of
the guest operating system and the CPU hardware. Furthermore,
as the critical OS services are precisely chosen to be run on the
micro-sliced cores, the rest of user-level application execution does
not suffer from the negative impact of short time slices. Finally,
even if a VM runs heterogeneous applications such as I/O intensive
workloads along with cache-intensive applications, only the I/O
handling code in the guest kernel is offloaded to the micro-sliced
cores, avoiding the negative impact on cache-sensitive threads with
short time slices. Table 1 summarizes the differences.

The proposed dynamic micro-sliced approach has been imple-
mented in the Xen 4.7 hypervisor. The experimental results of
various consolidated scenarios show that the proposed scheme can
effectively mitigate the consolidation artifact of the virtualized sys-
tem. For the eximmail server benchmark, a single micro-sliced core
increases the throughput by 4.56x while only degrading 8% of the
co-runner application. For the TLB synchronization intensive cases
in dedup and vips, our scheme improves the aggregate throughput
by 49% and 21%, respectively.

The new contributions of the paper are as follows.

• This paper identifies the critical OS services in virtualized
systems. It shows that the execution of such critical OS ser-
vices can be identified during runtime without any guest OS
modifications.
• The paper employs micro-sliced cores dedicated to the criti-
cal OS execution. The guest-transparent migration of kernel
execution to the micro-sliced cores effectively mitigates all
three aspects of virtual time discontinuity problem.
• The paper proposes a dynamic mechanism to adjust the num-
ber of micro-sliced kernel cores, to prevent underutilizing
CPU resources.

The rest of the paper is organized as follows. Section 2 intro-
duces the virtual time discontinuity problem and prior approaches,
comparing them to our work. Section 3 presents the critical OS
services, and their performance implication. Section 4 describes
the proposed design and Section 5 discusses the implementation
details on the Xen hypervisor. Section 6 presents the experimental
results, and Section 7 concludes the paper.

2 BACKGROUND AND DESIGN APPROACHES
2.1 Virtual Time Discontinuity Problem
In consolidated environments, virtual CPUs (vCPUs) share limited
physical CPUs (pCPUs) to maximize the resource utilization. Al-
though virtualization provides an illusion of continuous execution
for guest operating systems, in reality their executions are inter-
rupted because vCPUs are periodically scheduled out. Since the
underlying hypervisor is not aware of the semantic of guest OS
execution, vCPUs running critical OS services can be suspended.
When the vCPUs of a guest VM are scheduled out by the hypervisor,
the executing critical OS services such as interrupt handling can
be suspended before completion. This violates the OS design as-
sumption that urgent contexts, such as interrupt handlers or critical
sections, will not be preempted; leading to significant degradation
of system performance.

The discontinuity of virtual time causes many problems. First,
spinlock mechanisms are handled inefficiently. If a vCPU holding a
lock is scheduled out by the hypervisor, another vCPU waiting for
the lock cannot make forward progress until the lock-holder vCPU
is rescheduled and releases the lock (the lock holder preemption
problem). This phenomenon is also observed in the RCU (Read-
copy Update) synchronization [24]. In addition, the lock waiter
preemption problem occurs with the FIFO ticket lock, where only
the waiter with the subsequent ticket can acquire the lock. Even

Accelerating Critical OS Services in Virtualized Systems with Flexible Micro-sliced Cores EuroSys ’18, April 23–26, 2018, Porto, Portugal

though the lock is not being held by any vCPUs, the vCPU with the
next ticket can be preempted. Second, the discontinuity of virtual
time slows down the handling of external and inter-processor inter-
rupts. If the vCPU receiving an interrupt request is not running on
a pCPU, the interrupt cannot be handled until the next scheduling
turn of the vCPU. These problems share the same root cause, the
virtual time discontinuity (VTD) problem [2].

2.2 Prior Work
There have been significant efforts throughout software and even
hardware community to mitigate the performance degradation
imposed by the virtual time discontinuity (VTD) problem.
Scheduler-based approaches: Co-scheduling addresses the vir-
tual time discontinuity problem by scheduling all the sibling vC-
PUs of a VM at the same time [29]. However, the scalability of
co-scheduling is limited by the increasing numbers of vCPUs per
VM, as it requires synchronous scheduling of multiple vCPUs. Bal-
anced scheduling was proposed to minimize the negative effect of
co-scheduling [26]. Both of approaches can be used without guest-
level information. Ding et al. proposed scheduler modifications
of both the hypervisor and the guest OS to address the blocked
waiter wakeup problem [10]. Prioritizing vCPUs which receive I/O
interrupts has been widely adopted for the current hypervisor de-
signs [21]. Advanced techniques to infer the semantics of guest
OSes by examining SW/HW events were proposed [7, 14–16, 23].
Pool-based approaches: Pool-based approaches tackle the prob-
lem by arranging physical cores into different classes of cores. This
leads to the dedication of physical cores for the vCPUs which expe-
rience the virtual time discontinuity problem. vTurbo [33] dedicated
cores for I/O requests and applies a short time quantum for the
cores. However, it requires modifying the guest OS, which sepa-
rates critical I/O handling codes from the rest of the guest OS. The
hypervisor must run the I/O handling codes on the dedicated cores.
vTRS [28] categorized vCPUs into different classes based on their
time slice preference at runtime and schedules each classified vCPU
group to a CPU pool with an appropriate time slice.
Introducing new locking mechanisms: The Linux community
introduced a queue-based spinlock to replace the ticket-based spin-
lock for virtualized environments [13, 17]. Recently, Teabe et al.
introduced i-spinlock which allows only the thread which has suf-
ficient remaining time slice to acquire the lock [27]. Therefore, the
critical section can be completed before being interrupted. Another
approach redesigned the spinlock used in OSes to mitigate the lock
holder preemption (LHP) and lock waiter preemption (LWP) prob-
lems [22]. Meanwhile, there have been efforts delegating critical
sections into different cores (or servers) by leveraging remote pro-
cedure calls to improve performance of acquiring highly contended
locks [18, 25].
Architectural solutions: Ahn et al. proposed to shorten the time
quantum for all CPUs to address both lock and interrupt prob-
lems [2]. To mitigate the overhead caused by frequent context
switches, they introduced architectural techniques. However, this
approach required hardware modifications which are not currently
available. In commercial processors, an architectural technique was
introduced to reducewasting CPU cycles in spin locks [30]. Intel and
AMD processors detect cores excessively executing spinlocks [4, 9].

If a processor executes too many PAUSE instructions in a short pe-
riod of time, the processor generates an exception (VMEXIT). Upon
receiving the exception, the hypervisor de-schedules the vCPU and
picks another vCPU to increase the utilization [30].

2.3 Design Approaches
Our proposed mechanism identifies the preempted critical OS ser-
vices, and allows them to run on the micro-sliced cores to quickly
complete and exit the critical region. The micro-sliced cores are a
pool of cores scheduled with a short 0.1ms time slice, used only for
the critical OS services. To adapt to diverse virtual machine loads,
a dynamic mechanism is supported to adjust the number of micro-
sliced cores. Finally, our scheme aims to provide the aforementioned
functionality without requiring any guest OS modifications. In Ta-
ble 1, we compare our scheme, flexible micro-sliced cores, with
the prior approaches. We consider the following three design ap-
proaches, which comprehensively address all the aspects of the
virtual time discontinuity.
Precise selection of urgent tasks: The limitation of the prior
work is that the granularity of detecting urgency is virtual CPUs,
not the critical OS services [28, 33]. In this study, we pinpoint
critical OS services and offload the regions to a designated pool of
micro-sliced cores. The proposed mechanism executes the critical
kernel routines in cores with a small time quantum, resulting in a
very short turn-around time. Our design decision has the benefit of
allowing the main work to run under normal time slices with the
minimized context switching overheads, while the critical kernel
tasks are automatically offloaded to the micro-sliced cores.
Dynamic adjustment of the micro-sliced cores: Our work pro-
poses dynamic adjustments of the number of micro-sliced cores to
prevent underutilizing CPUs. When requests for handling critical
tasks are infrequent, the number of micro-sliced cores is decreased
to allow more cores to be used for regular the guest application
execution. When the system encounters critical OS tasks which are
insufficient with a single micro-sliced core, the number of micro-
sliced cores is increased to meet the demand.
Guest OS transparency: Requiring guest OS modification to ad-
dress the virtual time discontinuity problem is not desirable in
cloud systems, which support diverse guest operating systems. Our
approach is transparent to the guest operating system without any
OS modification. The hypervisor accesses the kernel symbol table
of the guest OS, and identifies the location of critical services. The
guest OS neither needs to be aware of our mechanism, nor requires
any modifications. Although the guest OS needs to explicitly pro-
vide the hypervisor with the kernel symbol table, the symbol table
is readily available in common OSes. For example, most Linux dis-
tributions including RedHat and Debian place the symbol table file
under the /boot/ directory. Even in cases where the guest kernel is
compiled by the user, the symbol table is commonly generated au-
tomatically and placed alongside the kernel binary. We will discuss
this issue in more details in Section 4.4.

2.4 Comparison with Prior Work
In this section, we discuss main differences between our work and
the recent prior studies. The first difference is that our scheme is
able to precisely pinpoint critical OS services while not modifying

EuroSys ’18, April 23–26, 2018, Porto, Portugal J. Ahn et al.

guest operating systems. By leveraging the existing kernel symbol
table, the proposed technique avoids any guest OS changes and
precisely reacts to the delayed processing of critical services. As
only the critical kernel codes run on the micro-sliced cores, the
user-level execution is not affected by the short time slice in the
micro-sliced cores.

Unlike the prior approaches, with the selective critical section
acceleration, the proposed technique efficiently mitigates all the
aspects of the VTD problem including inter-processor interrupt, I/O
interrupt, I/O and CPU mixed environment, and synchronization as
shown in Table 1. On the other hand, vTurbo [33] focuses only on
the I/O performance. It improves the I/O throughput and latency
by dedicating a core in a static manner. It modifies the guest OS
to separate the I/O handling codes and runs the I/O handler on
the dedicated core. vScale [7] dynamically adjusts the number of
virtual CPUs to mitigate the IPIs and synchronization problems,
but does not address the mixed VM cases, where I/O and CPU-
intensive behaviors are mixed on a single VM. vScale also requires
the modifications of guest OSes as well as the hypervisor.

To avoid the guest modification, vTRS [28] estimates the behav-
iors of virtual machines through runtime profiling. vTRS identifies
the types of virtual CPUs as lock intensive, I/O intensive, cache
thrashing, or cache sensitive. Based on the time slice preferences
of vCPUs, it clusters virtual CPUs to assign the best time quan-
tum for each type of vCPUs. However, due to the coarse-grained
classification on vCPUs, it may not address certain use cases. If
conflicting time slice preferences are mixed in a single VM, for ex-
ample, exhibiting I/O and cache-sensitive behaviors simultaneously,
the optimal time slice for the VM cannot be selected. The scheme
proposed in this paper only migrates the critical OS services to the
micro-sliced cores, instead of classifying the entire vCPUs which
run user-level and non-critical kernel codes as well as the critical
ones. In addition, the profiling based on HW performance counters
and other stats may not be responsive enough for changing VM
behaviors.

3 ANALYSIS OF CRITICAL OS SERVICES
This section investigates which parts of the operating system be-
come critical bottlenecks due to virtual time discontinuity. To iden-
tify the reason for the significant guest OS execution delay, we first
examine the sources of yield events, which occur when the guest
OS execution cannot make forward progress. Second, we analyze
the I/O handling stacks to investigate the causes of delay in I/O
interrupt processing in consolidated systems. The analysis will be
used to determine which virtual CPUs are executing critical OS ser-
vices and need to be migrated to the micro-sliced cores. Finally, we
measure the performance impact caused by the delayed critical OS
tasks due to the virtual time discontinuity problem in the baseline
system.

3.1 Critical OS Components
To identify which kernel tasks are delayed, we analyze the Linux
kernel functions which are frequently preempted due to the virtual
time discontinuity problem. Whenever a vCPU yields its pCPU, the
profiler reads the instruction pointer of the vCPU and interprets

workloads # of yields
solo co-run

exim 157,023 24,102,495
gmake 79,440 295,262,662
dedup 290,406 164,578,839
vips 644,643 57,650,538

Table 2: The number of yields of workloads run in solo and
co-run (w/ swaptions):

the semantic of the address by referencing the kernel symbol table
to figure out what the vCPU is processing in the kernel execution.

For the experiments in this paper, we used Xen 4.7 for the hy-
pervisor and the guest virtual machines were running Linux kernel
4.4 optimized for virtualization by default. We used Intel Xeon
E5645, which has 12 hardware threads. In solo configuration, one
virtual machine with 12 vCPUs runs on the system. In co-run
configuration, two virtual machines with 12 vCPUs for each VM
run on the system, with 2:1 overcommit ratio. One virtual ma-
chine runs PARSEC or MOSBENCH, while the other virtual machine
runs swaptions which exhibits the highest CPU utilization among
PARSEC applications.

We first assess the severity of yield increase caused by consol-
idation in the co-run configuration. Table 2 shows the number
of yields that occur in solo and co-run settings. We observe that
the number of yields increases significantly when the pCPUs are
time-shared between two virtual machines. Yielding pCPUs results
in poor performance because the critical OS tasks are delayed in the
yielding vCPUs. Section 3.3 will present the performance impact.

Table 3 summarizes the critical components frequently pre-
empted in the consolidated system for the Linux operating system.
The operations are identified based on the kernel address at the
yielding event. The table presents the commonly preempted op-
erations and their semantics. The operations commonly involve
spinlocks, TLB flushes, IPIs for scheduling, and interrupt handling.
We further analyze the behaviors of the operations with Linux Perf
and Xentrace [32] logs.

First, pause-loop exiting (PLE) incurs yields to avoid wasting
CPU cycles while trying to acquire spinlocks. PLE is an architec-
tural extension in the x86 processors which allows the hypervisor
to detect whether a CPU is excessively executing the pause instruc-
tion. It is used as a sign that the CPU is likely wasting CPU cycles
by spinning on the lock variable. Whenever a PLE exception occurs,
the common hypervisors including Xen and KVM de-schedule the
vCPU and select another runnable vCPU. In our experimental setup,
exim and gmake frequently cause PLE exceptions due to excessive
lock spinning when running with swaptions in a different virtual
machine.

Second, waiting for acknowledgments after sending inter-processor
interrupts (IPIs) causes frequent yields. The IPI-based messaging
mechanism is widely used in the Linux systems. It is used for TLB
synchronization and SMP load balancing. A guest VM running
dedup or vips frequently yields pCPUs when co-running with
another VM hosting swaptions. dedup and vips are applications

Accelerating Critical OS Services in Virtualized Systems with Flexible Micro-sliced Cores EuroSys ’18, April 23–26, 2018, Porto, Portugal

Module File Operation Semantic

irq
softirq.c irq_enter() increase the preemption count
softirq.c irq_exit() decrease the preemption count
chip.c handle_percpu_irq() wakeup the irq handler

kernel smp.c smp_call_function_single() send an inter-processor interrupt(IPI) to another core
smp.c smp_call_function_many() send an inter-processor interrupt(IPI) to other cores

mm

tlb.c do_flush_tlb_all() TLB flush received from remote
tlb.c flush_tlb_all() flush all processes TLBs
tlb.c native_flush_tlb_others() send TLB shootdown IPI to others
tlb.c flush_tlb_func() invoked by the TLB shootdown IPI
tlb.c flush_tlb_current_task() flush the current mm struct TLBs
tlb.c flush_tlb_mm_range() flush a range of pages
tlb.c flush_tlb_page() flush one page
tlb.c leave_mm() invoked in the lazy tlb mode
page_alloc.c get_page_from_freelist() try to allocate a page
page_alloc.c free_one_page() free a page in a memory zone
swap.c release_pages() release page cache

sched

core.c scheduler_ipi() invoked by reschedule IPI
core.c resched_curr() trigger the scheduler on the target CPU
core.c kick_process() kick a running thread to enter/exit the kernel
core.c sched_ttwu_pending() try to wake-up a pending thread
core.c ttwu_do_activate() enqueue a selected thread
core.c ttwu_do_wakeup() mark the task runnable and perform wakeup-preemption

spinlock

spinlock_api_smp.h __raw_spin_unlock() release a spinlock
spinlock_api_smp.h __raw_spin_unlock_irq() release a spinlock & enable irq
spinlock_api_smp.h _raw_spin_unlock_irqrestore() release a spinlock & restore irq
spinlock_api_smp.h _raw_spin_unlock_bh() release a spinlock & enable bottom half IP

rwsem rwsem-spinlock.c __rwsem_do_wake() wake up a waiter on the semaphorerwsem-xadd.c rwsem_wake()

Table 3: A summary of critical components in Linux 4.4

which intensively invoke mmap and munmap system calls to man-
age the shared address space among threads [8]. mmap and mun-
map involve expensive TLB synchronization process which makes
sure all CPUs have the up-to-date address mapping information in
their TLBs. The vCPU which initiates TLB synchronization calls
flush_tlb_*() which uses IPIs. If one or more sibling vCPUs are
preempted, the vCPU which initiated the TLB synchronization,
cannot receive the IPI acknowledgments until the recipients are
scheduled again. In the co-run configuration, dedup spends 89% of
its CPU cycles in the smp_call_function_many() function, wait-
ing for IPI acknowledgments. In Table 3, the tlb.c file in the mm
module corresponds to the TLB synchronization.

The SMP load balancer also takes advantage of the IPI mecha-
nism to send a signal to another CPU, called a reschedule IPI. The
vCPU initiating an IPI in smp_send_reschedule()waits for the IPI
acknowledgment from the recipient thread, and cannot proceed if
the recipient is preempted. In addition, we discover that a few kernel
functions, such as kick_process() and resched_curr(), suffer
from the effects of multiple inefficiencies. They initiate reschedule
IPIs while holding a spinlock or disabling guest level preemption.
As a result, the delay of reschedule IPI processing makes the lock
holder preemption problem more severe in the functions.

3.2 Critical I/O Path
System virtualization complicates the I/O path as it involves the
handling of physical interrupts by the hypervisor, and that of virtual
interrupts by the guest operating system. Once a network packet
arrives at the virtualized systems, the hypervisor is responsible for
handling the physical interrupt and determining the destination
virtual machine of the interrupt. After that, the hypervisor sends a
virtual interrupt to the target virtual CPU. In the guest operating
systems, the NIC interrupt handler (e.g., e100_intr()) is invoked,
but traversing the TCP/IP stack is deferred to the softIRQ context.

The I/O handling of the guest OS consists of a chain of oper-
ations involving potentially multiple vCPUs. The core handling
the hardware interrupt can differ from the core receiving softIRQ.
When the packet has been processed, the softIRQ handler (e.g.,
net_rx_action()) wakes up the registered user process waiting
for the data, using the CPU scheduler (e.g., ttwu_do_activate()).
The function in turn, invokes the reschedule IPI mechanism that
we discussed in the previous section. To provide the optimal I/O
performance, the hypervisor needs to quickly pass the IPI signal
from one vCPU (the IRQ handler) to another vCPU (the waiting
user process).

EuroSys ’18, April 23–26, 2018, Porto, Portugal J. Ahn et al.

Kernel Wait time (avg.)
component solo co-run

Page reclaim 1.03 420.13
Page allocator 3.42 1,053.26
Dentry 2.93 1,298.87
Runqueue 1.22 256.07

(a) Spinlock waiting time (µsec) in gmake

Avg. Min. Max.

dedup solo 28 5 1927
co-run 6354 7 74915

vips solo 55 5 2052
co-run 14928 17 121548

(b) TLB synchronization latency (µsec)

Jitters Throughput
(ms) (Mbits/sec)

solo 0.0043 936.3
mixed co-run 9.2507 435.6

(c) Latency and throughput in iPerf

Table 4: Performance loss: solo vs. co-run (w/ swaptions)

Furthermore, unlike the spinlock, TLB synchronization, and IPIs,
the kernel-level I/O processing is coupledwith user-level processing
because the final destination of an I/O operation is the application.
Eventually, the user-level applications are expected to consume the
incoming data as soon as possible. Our design must consider the
scheduling of the target application as well as the acceleration of
the interrupt service routine of operating systems for maximum
I/O throughput and latency improvement.

3.3 Performance Implication
This section presents the performance degradation due to the lock
holder preemption, TLB synchronization, and I/O in the same solo
and co-run environment as used in Section 3.1. The co-run scenar-
ios host two virtual machines on a system with 2:1 consolidation
ratio. One virtual machine executes a target application while the
other virtual machine runs swaptions. In the solo scenarios, a
single virtual machine can consume all pCPUs without any con-
tention.

First, we compare the latencies for acquiring spinlocks between
solo and con-run environments. Table 4a shows the average wait-
ing time to acquire spinlocks in gmake for four kernel components
reported by Lockstat [11]. Lock contention is severe in gmake co-
running with the VM hosting swaption. The latencies of acquiring
the spinlock are increased by orders of magnitude due to the system
consolidation. Note that the recent Linux kernel does not use ticket
spinlocks1 in virtualized environments to eliminate the latency
increased due to the lock waiter preemption problem. However,
even with the latest locking scheme the lock holder preemption
problem still exists.

The second results present the latencies for synchronizing TLBs
in the two scenarios. To measure the latencies, we observe a kernel
function, native_flush_tlb_others(), through Systemtap [1].
Since all the sibling vCPUs have to acknowledge their completion
for the TLB synchronization, the completion time can be increased
significantly because of preempted stragglers. Table 4b shows the
performance implications of TLB shootdown IPIs. Since the virtual
machine in the solo environment can occupy all the pCPUswithout
any contention, the latencies for TLB synchronization are tolerable
with 28 and 55µsec on average. On the other hand, the latencies
are significantly increased in co-run. According to this analysis,
the critical OS services such as spinlock and TLB synchronization
usually take less then 100µsec without contention. Therefore, we

1Since the Linux 4.2 kernel, qspinlock has replaced the ticket lock [17].

can exploit this observation by scheduling critical OS services with
a time slice of sub-milliseconds, as such critical services can be
completed even within the short time slice. The short time slice
reduces the waiting time by shortening the scheduling turn-around
latency.

The last evaluation shows the I/O latency and throughput in
solo and mixed co-run. In the mixed co-run scenarios, the target
virtual machine runs iPerf along with swaptions on the same VM.
The mixed co-run scenario presents a virtual machine running
both CPU intensive application and I/O intensive application at
the same time. It represents the case where the Xen hypervisor
cannot boost the virtual CPU which exhibits the mixed behavior.
In this evaluation, we used a 1Gbit network environment between
the server and client. The results are shown in Table 4c. Jitters
and throughputs of iPerf benchmark in the mixed co-run are
significantly affected, while the solo configuration exhibits the
upper bound performance. Jitters, representing the latency variance
of the I/O operations, is significantly increased due to consolidation,
from 0.0043ms in solo to 9.2507ms in co-run.

4 DESIGN
This section presents the design and architecture of our proposed
scheme. The goal of our system is to minimize the delay of pro-
cessing critical OS services while not sacrificing the performance
of other applications. The proposed system determines whether a
critical OS task is preempted by glancing at the instruction pointer
(instruction address) of the preempted vCPU and matching it with
the guest kernel symbol table at runtime.

To quickly resume and complete suspended critical tasks, the
proposed system takes advantage of one or more micro-sliced
cores. The micro-sliced cores are a pool of physical CPUs (pCPUs)
that have a very short time slice of 100µsecs. They are used to
quickly but briefly schedule vCPUs that need urgent attention to
run the critical OS services. We chose the short time slice based on
our analysis in Section 3.3, which shows that 100µsec is sufficient
to complete the critical services. The micro-sliced cores minimize
the queuing delay of the critical tasks: each vCPU in the runqueue
is given a short time slice of 100µsec, and the vCPUs waiting for
their turns in the runqueue will be scheduled with much shorter
scheduling latencies compared to conventional longer time slices.

The remainder of this section describes how to detect critical OS
services based on the guest kernel symbol table, how to handle the

Accelerating Critical OS Services in Virtualized Systems with Flexible Micro-sliced Cores EuroSys ’18, April 23–26, 2018, Porto, Portugal

VM-1

0 1 2 3

 Hypervisor

P0 P1 P3P2

VM-2

0 1 2 3 yield()

…
…

Normal

pool

Micro-sliced

pool

1

2
3

running

waiting

Figure 1: Identifying and offloading critical OS services
based on yields

critical tasks, and how to adjust the number of micro-sliced cores.
Lastly, we discuss the availability of the symbol table.

4.1 Detecting Critical OS Services
Our mechanism uses two types of hints to determine whether a
critical OS service is required. The first one is a yield event that
occurs either involuntarily (hardware triggered), or voluntarily
(software triggered). The second one is an incoming I/O IRQ into
the system. Both events can hint that the guest system may require
attention to immediately process critical services. However, the
two types of events are handled in different ways.
Detecting from yield events: Figure 1 shows how a critical ser-
vice signaled by a yield event is accelerated. The physical CPUs
(pCPUs) are grouped into the normal pool and the micro-sliced
pool, denoted as P0∼3. 1 When a vCPU (vCPU 3 of VM-2) yields
its physical CPU (pCPU), the yield signal triggers the detection
mechanism. To precisely locate what the vCPU is executing, the de-
tection mechanism consults the instruction pointer of the yielding
vCPU and looks up the guest kernel symbol table. 2 Depending
on the reason of yield, the instruction pointers of the already pre-
empted sibling vCPUs (vCPUs 0∼2 of the same VM) may need to
be inspected as well. 3 If the preempted vCPU was conducting a
critical OS task, the hypervisor migrates the vCPU which was run-
ning in the normal pool of physical cores onto the micro-sliced
pool. If necessary, the hypervisor migrates the preempted sibling
vCPUs into the micro-sliced pool for a certain type of critical OS
services, such as TLB synchronization.

Depending on the types of the kernel tasks which caused yield
events, each type is handled differently. The identification of the
kernel task starts from the instruction address at the preemption
point. With the value of the instruction pointer register, the hy-
pervisor looks up the kernel symbol table of the guest operating
system, identifying whether the preempted operation is critical or
not based on the whitelist derived from Table 3. The details are
explained in Section 4.2. Since the proposed system accelerates
kernel services instead of applications, the kernel symbol table is
sufficient to obtain the semantics of yield events.
Detecting from IRQ events: Figure 2 shows the flow of an incom-
ing network packet. 1 When a physical interrupt is triggered by

31 20

Hypervisor
3

2

vIPI

 I/O

vIRQ
 _

 _1

pIRQ

App2 App1

Micro-sliced

pool
Normal

pool

Figure 2: Identifying vCPUs running critical OS services
with I/O events

I/O devices, the interrupt generates a VMEXIT to handle the I/O re-
lated interrupt on the hypervisor. 2 Then the hypervisor forwards
the interrupt to a designated vCPU (vCPU 2) of the recipient VM.
The recipient vCPU invokes the IRQ handler of the guest operating
system. In the case of network I/Os, the IRQ handler offloads the
remaining parts (e.g., TCP/IP stack traversing) to softIRQ. Finally,
when the softIRQ finishes handling the packet, and the process is
blocked, the process that the packet directed to is rescheduled. If
the process is on another vCPU (vCPU 0), a reschedule IPI is sent
to the vCPU 3 .

There are two critical services that must be handled timely to
improve I/O performance. First, the virtual IRQ sent by the hyper-
visor to the guest VM needs to be handled quickly, to prevent the
delayed processing of the packet. Second, rescheduling the process
that eventually receives the incoming packet is also critical to the
performance of I/O. The hypervisor can identify both of the critical
events by the following two clues: first, an incoming physical IRQ
that is addressed to a VM, and second, an IPI sent to another sibling
vCPU. These two signals can be used to detect two types of critical
IRQ events.

Limited support for accelerating such IRQ handling is already
available in the current hypervisor, called BOOSTING. The Xen hy-
pervisor boosts a vCPU that was not previously in a runqueue. The
boosted vCPU is immediately scheduled in anticipation that they
will need to handle urgent tasks such as I/O interrupts. However,
the I/O prioritization mechanism in the current hypervisor is not
always effective. As previously identified by Xu et al. [33], vCPUs
that host both I/O intensive and CPU intensive workloads may
show poor I/O performance. This mixed behavior within a vCPU
prevents BOOSTING from being triggered, severely degrading the
I/O performance. When another CPU intensive task is running
on the vCPU in such mixed workloads, the vCPU is already on
the runqueue (if it has been preempted), and this will prevent the
boosting of the preempted vCPU. This leads to the degradation of
I/O performance on a mixed behavior vCPU. The proposed system
improves the performance of such mixed workloads by migrating
critical IRQ handling tasks to the micro-sliced cores.

EuroSys ’18, April 23–26, 2018, Porto, Portugal J. Ahn et al.

4.2 Handling Critical Services
Depending on the types of critical services, acceleration to the
micro-sliced cores are handled differently. First, if the vCPU gener-
ating the yield exception is in the middle of TLB synchronization,
the hypervisor wakes up and migrates all the preempted sibling
vCPUs of the virtual machine onto the micro-sliced cores, as those
sibling vCPUs need to participate in the TLB synchronization. The
TLB synchronization uses a one-to-many IPI, where all the pre-
empted vCPUs must be re-scheduled immediately to process the
incoming IPI. If the system does not have enough micro-sliced cores
to accelerate all the vCPUs, more physical cores can be added onto
the pool of micro-sliced cores, as will be discussed in Section 4.3.

Second, if the yield exception occurs while spinning on a lock
(e.g., _raw_spin_lock()), where the vCPU is waiting for a lock held by
another already preempted vCPU. As shown in Table 3, the hyper-
visor checks whether the preempted vCPU siblings are executing
in the critical section. If so, it wakes up and migrates the vCPUs
to the micro-sliced pool to complete the suspended critical section.
After running on the micro-sliced cores, the vCPUs are migrated
back to the normal cores, to prevent wasting the micro-sliced cores
on non-critical tasks.

I/Os are handled in a similar manner, where a selected vCPU is
migrated into the micro-sliced pool. When the hypervisor receives a
physical IRQ and sends a corresponding virtual IRQ to the guest VM,
the hypervisor migrates the recipient vCPU onto the micro-sliced
cores, to allow the IRQ to be timely handled. When the handling of
the IRQ is finished, if the user process waiting for the packet is on a
different vCPU, an IPI will be sent to the vCPU (3 of Figure 2). The
hypervisor will relay the IPI for the guest VM, and before the relay
of interrupt, it moves the recipient vCPU onto the micro-sliced
pool.

4.3 Adaptive Adjusting of Micro-sliced Cores
In consolidated environments, a single micro-sliced core may not be
able to handle all the critical OS services immediately whenmultiple
vCPUs need to be woken up. In such cases, the hypervisor needs to
increase the number of micro-sliced cores. However, if the demands
for critical tasks decrease, idle micro-sliced cores need to be re-
assigned to the normal core pool to run normal vCPUs. To adapt to
the changing demands, the hypervisor needs to dynamically adjust
the number of micro-sliced cores in a system. Figure 3 depicts the
migration of a normal core into a micro-sliced core. P3 (pCPU 3) is
removed from the pool of normal cores, and reassigned to the pool
of micro-sliced cores.

In the figure, 1 the hypervisor constantly profiles how many
times each event occurs. 2 Once a normal core needs to migrate
to the micro-sliced pool, the hypervisor picks a physical core from
the normal pool and the vCPUs waiting on the runqueue of the
selected core are reassigned to other normal cores. 3 The physical
core is assigned to the micro-sliced pool with a short time slice.
In the next profiling turn, the hypervisor decides whether to keep
the micro-sliced core or return it to the normal pool based on the
profiled statistics of the next round.

Algorithm 1 describes the selection algorithm for the number
of micro-sliced cores. Initially, the hypervisor does not reserve
any micro-sliced cores. If the virtual machines do not contend for

VM-1

 Hypervisor

P0

Normal

pool

Micro-sliced

pool

1

2

3

VM-2

P1 P2 P3

#IPIs 1K

#PLEs 37K

#IRQs 0.5K

Figure 3: Migrating a normal core to the micro-sliced pool

pCPUs, the hypervisor simply skips this profiling turn. The number
of micro-sliced cores becomes zero till the next profiling turn.

Adjusting the micro-sliced core is done by inspecting the exe-
cution statistics of the virtual machines. The hypervisor profiles
the number of inter-processor interrupts (IPIs), pause-loop exits
(PLEs), and virtual IRQs for I/O devices (vIRQ). Periodically, the
hypervisor determines which event is dominant in terms of the
number of events. If the IPI type is dominant, the hypervisor needs
to determine how many micro-sliced cores are enough to serve
the IPI tasks, as the IPI handling may involve multiple vCPUs. If
the PLE or IRQ type is dominant, the hypervisor simply reserves
a micro-sliced core, as one micro-sliced core can cover the neces-
sary loads for the two types of critical tasks in the target 12-core
machine.

For IPI dominant cases, the algorithm finds the best number of
micro-sliced cores iteratively in a trial-and-error manner. Since
the hypervisor migrates all the preempted sibling vCPUs onto the
micro-sliced pool for the IPI cases as discussed in Section 4.2, the
required number of micro-sliced cores may vary by the states of
vCPUs. The algorithm iteratively increases the number of micro-
sliced cores andmeasures the number of IPI events until the number
of cores reaches the limit of maximum micro-sliced cores. Since
the overall performance of applications is highly affected by the
number of normal cores, the algorithm maintains a limit on the
maximum number of micro-sliced cores.

On the other hand, if IPI and PLE events do not occur, the micro-
sliced core pool is decreased. The hypervisor can allow the system
administrator to manually tune the number of micro-sliced cores.
The manual mode delegates the process of identifying the optimal
number of micro-sliced cores to the administrator. The downside is
that the administrator needs to have prior knowledge about their
workloads. Such static policy is suitable for private clouds where
the characteristics of applications are already known.

4.4 Discussion
Although the proposed mechanism of detecting critical OS ser-
vices with the instruction pointer requires the kernel symbol table
for virtual machines, obtaining the kernel symbol information is
straightforward in common systems. In variants of Linux systems,
the kernel symbol table is compiled into the System.map file along

Accelerating Critical OS Services in Virtualized Systems with Flexible Micro-sliced Cores EuroSys ’18, April 23–26, 2018, Porto, Portugal

Algorithm 1 Adjusting the number of micro-sliced cores

1: procedure AdaptiveMicroSlicedCores
2: if pro f ileMode == False then
3: // Initialize the profiling phases
4: numµCores ← 0
5: prof ileMode ← T rue
6: interval ← Prof ile Interval (e .д ., 10ms)
7: goto out
8: end if
9:
10: // Gather the statistics of urgent events for the numµCores
11: curr ← urEvents[numµCores] ← systemW ideStats
12: interval ← Prof ile Interval
13:
14: if numµCores == 0 then
15: // Any urgent events did not occur
16: if CheckU rдentEvents(urEvents) == False then
17: prof ileMode ← False
18: interval ← EpochInterval (e .д ., 1000ms)
19: goto out
20: end if
21:
22: numµCores ← numµCores + 1
23: if curr .numIP Is > curr .numPLEs OR
24: curr .numIP Is > curr .numIRQs then
25: // IPI dominant case
26: goto out
27: else
28: // Early termination for IRQ or PLE cases
29: prof ileMode ← False
30: interval ← EpochInterval
31: end if
32: else if numµCores < NUM_LIMIT _µCORES then
33: numµCores ← numµCores + 1
34: else if numµCores == NUM_LIMIT _µCORES then
35: numµCores ← F indBest µCoreCnt (urEvents)
36: prof ileMode ← False
37: interval ← EpochInterval
38: end if
39:
40: out:
41: SetT imer (AdaptiveMicroSlicedCores, interval)
42: end procedure

with the kernel binary to help diagnose kernel panics. For Win-
dows, Microsoft maintains a symbol server to help the debugging
process [19]. In most of the public cloud environments, virtual
machine images must be imported to cloud service components
(e.g., virtual machine image server) before using them in compute
nodes. A possible systematic methodology for acquiring kernel sym-
bols is to expand the image server to provide the kernel symbols
corresponding to each virtual machine image.

In practice, customers commonly leverage the virtual machine
images served by cloud providers. For example, Amazon provides
Linux andWindows images calledAmazonMachine Images (AMI) [3].
Similarly, Microsoft Azure and Google Cloud Platform have also
their ownmarketplace to provide popular OS images to customers [12,
20]. Considering the popularity of cloud-provided VM images, we
anticipate that acquiring kernel symbol tables of virtual machines

will not be challenging, as the cloud providers can guarantee that
the symbol table is included for each VM image.
Limitations: The proposed technique is applied only to the critical
section of guest operating systems, but not to guest applications.
As the major performance impact of the virtual time discontinuity
problem is within the kernel execution, the proposed technique ef-
fectively mitigates the majority of performance degradation caused
by the problem. However, it opens a new possibility to accelerate
certain critical codes in applications. A new user-level interface
can be added to describe the user-level critical sections, and make
them accessible from the hypervisor. The hypervisor will be able
to register the critical regions in its separate per-process symbol
table, and accelerate those regions on the micro-sliced CPU pool, if
necessary.

5 IMPLEMENTATION
We implemented our prototype in Xen 4.7, confining all the neces-
sary modifications in the hypervisor. Our mechanism to read the
instruction pointer register and to look up the kernel symbol table
does not require any changes to the guest operating systems and
guest applications. For I/O operations, we leverage the Xen I/O
handling mechanism, which relays IRQs and IPIs to guest operating
systems. We made modifications at these relay paths in the hyper-
visor. Our modifications comprise of 1454 lines of code changes. The
source code is available at http://github.com/microslicedcore.
Handling urgent signals: There are two sources of yields: PLE
and guest OS-initiated yields. First, when a PLE occurs while a
virtual CPU (vCPU) is being executed, the VMEXIT handler, vmx-
_vmexit_handler(), is invokedwith the EXIT_REASON_PAUSE_IN-
STRUCTION reason in Xen. Then, the vCPU involuntarily yields the
physical CPU (pCPU) to prevent wasting CPU cycles. Second, the
operating system may voluntarily invoke the yield hypercall (e.g.,
in the xen_smp_send_call_function_ipi() function). We take
advantage of the yield signals as the trigger point for detecting
preemptions of critical services. The vcpu_yield() function is
eventually triggered by the two sources. The handling of the yields
is dealt at this function. For I/O operations, the Xen hypervisor has
been designed to boost events such as virtual IRQs and virtual IPIs.
However, the vanilla Xen cannot boost a vCPU when it is running a
mix of different workloads and exhausted all the credits. We allow
the vCPU which is on the runqueue to run on the micro-sliced cores
if it receives the interrupt.
CPU pool management: Our mechanism implements pools of
normal cores and micro-sliced cores by extending the cpupoolmech-
anism of Xen [31]. We fork a micro-sliced pool which becomes the
child cpupool of the normal pool. The micro-sliced pool inherits the
scheduling policy and parameters from the parent cpupool except
for the time quantum. In the micro-sliced pool, we do not maintain
a master CPU which is responsible for managing credits in the
credit scheduler. Instead, the micro-sliced pool relies on the master
CPU in the parent cpupool to manage credits of the pool. Therefore,
the micro-sliced pool does not need to consider the accounting
mechanism separately.

We relax the restriction of Xen where all the vCPUs of a virtual
machine must be in the same cpupool. Some vCPUs can be in
the normal pool while others are in the micro-sliced pool. Once

EuroSys ’18, April 23–26, 2018, Porto, Portugal J. Ahn et al.

we decide to accelerate a suspended vCPU which is identified as
urgent, the vcpu_migrate() function in Xen is extended to migrate
the vCPU to the micro-sliced pool. We limit the length of the per
pCPU runqueue in the micro-sliced pool to one vCPU to avoid the
case stacking vCPUs. So, we check the length of runqueues before
initiating the acceleration.
Tracking critical events: As mentioned in Section 4.3, the best
number of micro-sliced cores depends on the type of urgent tasks
such as inter-processor interrupts (IPIs), pause-loop exits (PLEs),
and virtual IRQs (vIRQs). Our dynamic mechanism first figures out
which critical service is currently dominant in the system without
having micro-sliced cores for 10ms (profile phase). The Xen hyper-
visor already keeps track of the events for the PLE and vIRQ. We
extend the existing tracking mechanism and add an IPI counter
to record the number of yields caused by IPIs. During the profile
interval, if events are not counted, the system is considered as not
contended. In such cases, the micro-sliced cores are not allocated
for one second (run phase). Otherwise, we start exploring for an
adequate number of micro-sliced cores. Depending on the type of
critical services, we take two different approaches. If the IPI is dom-
inant source of yields, we need to know how many micro-sliced
cores are sufficient. To find the answer, we profile the number of IPI
events by increasing the number of cores in the micro-sliced pool
one by one until a predefined limit. Without the limit, the profiling
cost could be expensive because it gradually reduces the number
of cores in the normal pool. Based on the profiling results, we can
simply select a configuration which generates the least number of
yields. For IRQ or PLE dominant cases, a single micro-sliced core
is allocated because the two types of critical services can be easily
covered by a micro-sliced core. The decision from the above profil-
ing phase is enforced for one second (run phase). The run phase is
long enough to avoid unnecessary fluctuations on the number of
micro-sliced cores, which can be affected by short-lived behavior
changes in VMs.
Other considerations:While running on the micro-sliced cores,
we prevent the vCPUs from being preempted by the boosting and
load balance mechanism to rapidly complete the urgent tasks with-
out any interruption. Also, we do not allow the load balancer to
migrate vCPUs from the normal to micro-sliced pool because the
vCPUs to run on the micro-sliced pool must be selected by our
mechanism. After consuming the allocated time slice (0.1ms) on
the micro-sliced cores, we always move the vCPUs back to the
normal pool. Otherwise, the vCPUs that have been migrated to
the micro-sliced cores can monopolize the micro-sliced pool. For
example, upon preemption at the micro-sliced core if we insert the
preempted vCPU back to the micro-sliced core runqueue again,
the preempted vCPU prevents other urgent vCPUs from being mi-
grated into the micro-sliced pCPU due to our restriction on the
length of each runqueue.

6 EVALUATION
6.1 Experimental Setup
We evaluate our proposed scheme with a server system equipped
with two Intel Xeon E5645 processors which have 12 physical CPUs.
Each physical CPU has two hardware threads enabled by hyper-
threading, and thus, the total number of hardware context is 24.

However, to avoid the effect of NUMA and Dom-0, only a socket
(12 threads) is used to evaluate the performance. A total of 32GB
memory is installed in the socket. We use Xen 4.7 as our hypervisor,
and the time slice for the baseline is set to the default 30ms. The
micro-sliced cpupool is configured to have a time slice of 0.1ms.
Environment: Tomimic cloud-like consolidated environments, we
deploy two virtual machines which are configured with 12 virtual
CPUs (vCPUs) and 8GB memory each. The guest virtual machines
run Ubuntu 14.04 and Linux kernel 4.4. Since the Linux kernel has
been optimized for virtualization, we did not change the default ker-
nel configuration options such as CONFIG_PARAVIRT_SPINLOCKS=y.
In addition, Pause-Loop Exiting (PLE) is turned on by default.
Benchmarks: A subset of the applications from PARSEC [5] and
MOSBENCH [6] are used to evaluate this work. From PARSEC,
dedup and vips are selected as they are known to pressure the TLB
synchronization component in the kernel. Both applications use
the native input. From MOSBENCH, exim, gmake, and psearchy
are chosen for application-level evaluation. These workloads are
designed to stress various kernel components. exim frequently
creates processes and small files. gmake is known to intensively
exercises the kernel to incur LHP problems. We also use memclone
as a microbenchmark. We use the default input parameters for
the MOSBENCH workloads. In the latter part of this section, we
analyze and discuss the overhead of our technique for CPU intensive
applications from SPECCPU2006.

6.2 Experimental Results
Performance improvements: Figure 4 shows the performance
improvements by varying the number of micro-sliced cores from 1
to 6, compared to the baseline. Since the number of normal cores
decreases as the number of micro-sliced cores increases, we limit
the number of micro-sliced cores to 6 out of the 12 cores in this
evaluation. We execute two virtual machines, with the first virtual
machine running one of six applications and the second co-runner
virtual machine running swaptions. The overall performance trend
shows that the execution time is reduced for the target virtual ma-
chine (the first VM) whereas the performance of co-runner virtual
machine (the second VM) is slightly degraded.

For the consolidation of gmake and swaptions, the execution
time of gmake is significantly reduced by the micro-sliced cores,
but swaptions is slowed down compared to the baseline. The main
reason is that in the baseline configuration, gmake was not able
to fully exercise the allocated CPUs in consolidated environments
because of the lock holder preemption problem. As a result, the
guest operating system hosting gmake is frequently scheduled out
by the PLE hardware exception, while spinning on the lock. Once a
yield event occurs, the hypervisor selects a runnable vCPU mostly
from the VM with swaptions, to avoid wasting CPU cycles in the
system. Thus, swaptions was able to use more CPU time than
gmake in the baseline. Note that this behavior is due to the work-
conserving policy in the hypervisor scheduler. However, with a
micro-sliced core, the number of yields for gmake is significantly
reduced because the hypervisor detects the preempted lock holder
vCPU and wakes up the vCPU on the micro-sliced core. With micro-
sliced cores, gmake is able to utilize CPUs much better than the
baseline. The combined throughput improvement from the VM

Accelerating Critical OS Services in Virtualized Systems with Flexible Micro-sliced Cores EuroSys ’18, April 23–26, 2018, Porto, Portugal

gmake
(VM-1)

swaptions
(VM-2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

.
e
x
e
c
u
ti

o
n
 t

im
e
 (

%
)

memclone
(VM-1)

swaptions
(VM-2)

dedup
(VM-1)

swaptions
(VM-2)

vips
(VM-1)

swaptions
(VM-2)

Baseline 1 2 3 4 5 6

Figure 4: Performance results by varying the number of micro-sliced cores: gmake, memclone, dedup, and vips

Baseline 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

T
h
ro

u
g
h
p
u
t

im
p
ro

v
e
m

e
n
t

exim

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
li
z
e
d
 e

x
e
c
u
ti

o
n
 t

im
e
 (

%
)

swaptions

Baseline 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
h
ro

u
g
h
p
u
t

im
p
ro

v
e
m

e
n
t

psearchy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
li
z
e
d
 e

x
e
c
u
ti

o
n
 t

im
e
 (

%
)

swaptions

Figure 5: Performance results by varying the number of
micro-sliced cores: exim and psearchy

pair is 20% when running with a single micro-sliced core. Since the
workload combination is sensitive mostly only to the lock holder
preemption problem, one single micro-sliced core was sufficient to
serve the urgent services.

memclone creates threads and invokes the mmap system call to
allocate memory on each thread. It also suffers from the lock holder
preemption problem. When memclone runs with swaptions, a
micro-sliced core significantly improves the performance of memcl-
one by 91%, while increasing the execution time of swaptions only
by 6%. Although memclone shows the best performance with three
micro-sliced cores, the performance difference is minor, compared
to a single micro-sliced core.

On the other hand, for the executions of dedup and vips, we
found that a single micro-sliced core incurs negative effects. The
reason is that these applications are frequently involved in the TLB
synchronizations. Unlike spinlocks, TLB synchronizations require
all the vCPUs belonging to the same virtual machine to participate
in the process. Although the number of preempted vCPUs in the
same virtual machine depends on the system load status, in our
evaluation, a single micro-sliced core was insufficient. Increasing
the micro-sliced cores to two or three effectively reduces the delay
in the TLB synchronizations. From four micro-sliced cores, how-
ever, the performance was degraded because the gain in the kernel
performance from the four micro-sliced cores is lower than the
performance degradation in non-critical parts by the reduction of
normal cores. With three micro-sliced cores, the yielding time of

dedup is significantly reduced by 70% while the execution time of
swaptions is only increased by 14%. The combined throughput
improvement is 56% for the two applications. For the case of vips
and swaptions, both applications are improved by 17% and 7%,
respectively.

Figure 5 shows two more virtual machine pairs with with a
different performance metric, as the performance metric of exim
and psearchy is throughput. On the left y-axis, the graph shows
the throughput improvements and the right y-axis indicates the
execution time of swaptions running on the co-runner VM. For
both cases, the introduction of micro-sliced cores can improve the
overall system performance. For exim, the throughput is improved
by 3.9 times over the baseline by employing a single micro-sliced
core, at the cost of 10% swaptions performance. In the baseline con-
figuration, swaptions has benefited from the unused CPU cycles
yielded from the virtual machine serving exim. For the psearchy
and swaptions case, a micro-sliced core exhibits 1.4 times through-
put improvement. The throughput of psearchy was improved by
reducing the number of halts and spinlock-induced yields.

Throughout the experiments, the best number of micro-sliced
cores varies, depending on the type of workloads because each
workload has a different dominant kernel component. We observe
that TLB synchronization-sensitive applications, dedup and vips,
work effectively with three micro-sliced cores in the system config-
uration with 12 HW threads. A single micro-sliced core is sufficient
for the spinlock sensitive applications, because the lock cannot be
held by multiple vCPUs.
Dynamic adjusting of micro-sliced sores: Since each workload
combination has a different performance benefit with the different
number of micro-sliced cores, the number of micro-sliced cores
needs to be adjusted dynamically. We evaluate our proposed dy-
namic technique described in Section 4.3, which finds the best
number of micro-sliced cores at runtime.

Figure 6 shows the performance comparison of the static best
case (static) with the dynamic micro-sliced cores (dynamic). For
the static best configuration, for each run, we pick the number
of micro-sliced cores which exhibits the best performance in the
previous experiments. In general, our simple scheme of estimat-
ing the required number of micro-sliced cores shows comparable
performance to the static ideal cases.

EuroSys ’18, April 23–26, 2018, Porto, Portugal J. Ahn et al.

gmake swapt.
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
li
z
e
d
 e

x
e
c
u
ti

o
n

ti
m

e
 (

%
)

memclone swapt. dedup swapt. vips swapt.

Baseline Static Dynamic

Baseline static dynamic
0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t

im
p
ro

v
e
m

e
n
t

exim

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
li
z
e
d

e
x
e
c
u
ti

o
n
 t

im
e
 (

%
)

swaptions

Baseline static dynamic
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
h
ro

u
g
h
p
u
t

im
p
ro

v
e
m

e
n
t

psearchy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
li
z
e
d

e
x
e
c
u
ti

o
n
 t

im
e
 (

%
)

swaptions

Figure 6: Performance comparison: static vs. dynamicmicro-sliced cores

B S D
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Y
ie

ld
 (

%
)

gmake

B S D

memclone

B S D

dedup

B S D

vips

B S D

exim

B S D

psearchy

others

halt

spinlock

ipi

Figure 7: Reduction of the number of yield events (B: Baseline, S: Static, and D: Dynamic)

The memclone and dedup cases show a small performance loss
of around 5%, compared to the static ideal case. In exim, however,
the throughput is slightly improved with the dynamic technique.
For psearchy, its throughput decreases compared to the static ideal
case, but still shows much better than the baseline by 20%.
Effectiveness of dynamicmicro-sliced cores: Figure 7 presents
the number of yield events that can be reduced by our schemes
(static and dynamic), compared to the baseline. We decompose
the sources of yields and plot their stacked bar graphs. For the
multi-threaded applications, the inter-processor interrupts are the
dominant source of yields. Interestingly, dedup generates many
halt exceptions in addition to the IPIs in the baseline, as the CPU
utilization of dedup is lowered significantly by the delays in the
TLB shootdown operations.

However, our proposed scheme is able to reduce the number
of IPI-induced yields by accelerating the suspended vCPUs on
the micro-sliced cores. It results in a decreased number of halt-
induced yields. For gmake, memclone, and exim, the numbers of
PLEs, which account for most of the yields, are effectively reduced
by our schemes. With the micro-sliced cores, the yielding of CPUs
is significantly reduced. As the yielding event is reduced, the appli-
cations exhibit higher CPU usages than the baseline.
Overhead analysis:We also evaluate the proposed technique with
workloads which do not intensively exercise OS services. The goal
of this evaluation is to show that our scheme provides better per-
formance with the applications which are sensitive to OS services,
while not sacrificing the performance of unaffected applications.
We selected two multi-threaded applications from PARSEC and
several single threaded applications from SPECCPU2006. These
applications are known to spend most of their runtime in the user-
level execution, and do not spendmuch time in the kernel execution.
Figure 8 presents the execution times of those applications with our

black.

swapt.

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

.
e
x
e
c
u
ti

o
n
 t

im
e
 (

%
)

bodyt.

swapt.

strea.

swapt.

raytr.
swapt.

perlb.

swapt.

sjeng
swapt.

bzip2
swapt.

Baseline Dynamic

Figure 8: Non-affected workloads

scheme enabled. On average, the performance overhead is around 2-
3%. The benchmark applications for Figure 8 do not suffer from the
virtual time discontinuity problem. The proposed dynamic scheme
with its periodic profiling, does not incur any noticeable perfor-
mance degradation for the applications, showing that the extra
performance overheads of the proposed scheme is negligible.
I/O performance: In this experiment, we evaluated the I/O perfor-
mance for virtual machines with mixed behaviors. It uses a scenario
where I/O and compute intensive applications are hosted on the
same virtual machine, and the I/O intensive process is placed on the
same vCPU as a compute intensive application. Due to the mixed
behavior of the vCPU, the vCPU will not benefit from the boost-
ing mechanism of the Xen hypervisor because the CPU intensive
application can always occupy the vCPU. This causes delays in
the processing of the network packets in the baseline hypervisor.
In addition, timely acknowledgments and subsequent requests are
delayed, reducing the performance of I/O.

Accelerating Critical OS Services in Virtualized Systems with Flexible Micro-sliced Cores EuroSys ’18, April 23–26, 2018, Porto, Portugal

Baseline µ-sliced
0

100

200

300

400

500

600

700

800

B
a
n
d
w

id
th

 (
M

b
p
s
)

0

2

4

6

8

Ji
tt

e
rs

 (
m

s
)

TCP UDP

(a) Latency and throughput

Workloads

VM-1 iPerf
lookbusy

VM-2 lookbusy

(b) Workload combinations

Figure 9: Performance of mixed co-run cases

To evaluate the I/O performance of the mixed VM, we use two
virtual machines with one vCPU each, pinned onto the same physi-
cal CPU (pCPU). The applications running on each VM are shown
in Figure 9b. Lookbusy is used to represent a compute bound appli-
cation, constantly utilizing the CPU.

Figure 9a shows the throughputs and jitters of the network bench-
mark iPerf. First, the TCP throughput of the baseline, which suf-
fers from the mixed behavior vCPU interfering with the hypervisor
boost mechanism, is improved in the micro-sliced scheme. Jitters
are also significantly improved, from over 8ms to near 0ms. The
reason for the significant jitter reduction is due to the prompt sched-
uling of the vCPU handling the IRQ signals. In the baseline, the IRQ
signal is sent to the guest by the hypervisor, but because the guest
vCPU was not boosted, the handling of the IRQ signal was delayed.
The same principle applies to the TCP bandwidth. Our work mi-
grates the suspended vCPUs onto the micro-sliced cores to allow
rapid processing of the urgent vCPUs, leading to the improved
jitters and throughput.

We show that our approach of offloading critical OS services
to the micro-sliced cores can significantly improve the I/O perfor-
mance in the presence of mixed behavior CPUs. This is because our
scheme pinpoints short critical I/O handling codes, and offloads
only these regions of codes onto the micro-sliced cores, without
affecting the rest of execution.

7 CONCLUSIONS
In this work, we proposed a new approach to mitigate the virtual
time discontinuity problem in consolidated environments. To pre-
cisely detect virtual CPUs preempted while executing critical OS
services, we took advantage of the instruction pointer of vCPUs
and consulted with kernel symbols of the guest operating systems.
Once vCPUs executing critical urgent services were identified, we
offloaded the vCPU to the micro-sliced cores: a pool of CPUs that
schedule vCPUs in very short time slices. Our proposed system
did not require any guest OS modifications, the hypervisor trans-
parently identified the critical guest OS services and accelerated
them. The evaluation showed that our proposed scheme improves
the performance of problematic consolidation scenarios without
degrading the performance of other workloads.

ACKNOWLEDGMENT
This research was supported by the National Research Foundation
of Korea (NRF-2017R1C1B5075437, NRF-2017M3C4A7081088) and
by the Institute for Information & communications Technology
Promotion (IITP-2017-0-00466). Both grants were funded by the
Ministry of Science, ICT and future Planning (MSIP), Korea.

REFERENCES
[1] 2015. A scripting language and tool for dynamically instrumenting Linux kernel.

(2015). Retrieved March 6, 2018 from https://sourceware.org/systemtap/
[2] Jeongseob Ahn, Chang Hyun Park, and Jaehyuk Huh. 2014. Micro-Sliced Virtual

Processors to Hide the Effect of Discontinuous CPU Availability for Consolidated
Systems. In Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-47).

[3] Amazon. 2018. Amazon Machine Images (AMI). (2018). Retrieved March 6, 2018
from https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

[4] AMD. 2010. AMD64 Architecture Programmer’s Manual Volume 2: System
Programming. Programmer’s Manual. (2010).

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’08).

[6] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. 2010. An Analysis of
Linux Scalability to Many Cores. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation (OSDI ’10).

[7] Luwei Cheng, Jia Rao, and Francis C. M. Lau. 2016. vScale: Automatic and Effi-
cient Processor Scaling for SMP Virtual Machines. In Proceedings of the Eleventh
European Conference on Computer Systems (EuroSys ’16).

[8] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2012. Scalable
Address Spaces Using RCU Balanced Trees. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’12).

[9] Intel Corporation. 2017. Intel 64 and IA-32 Architectures Software Developer’s
Manual. (2017).

[10] Xiaoning Ding, Phillip B. Gibbons, Michael A. Kozuch, and Jianchen Shan. 2014.
Gleaner: Mitigating the Blocked-waiter Wakeup Problem for Virtualized Mul-
ticore Applications. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference (USENIX ATC ’14).

[11] Linux Kernel Documentation. 2015. Lock Statistics. (18 September 2015). Re-
trieved March 6, 2018 from https://www.kernel.org/doc/Documentation/locking/
lockstat.txt

[12] Google. 2018. Google Compute Engine. (2018). Retrieved March 6, 2018 from
https://cloud.google.com/compute/docs/images

[13] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2015. Scalability in the
Clouds!: A Myth or Reality?. In Proceedings of the 6th Asia-Pacific Workshop on
Systems (APSys ’15).

[14] Hwanju Kim, Sangwook Kim, Jinkyu Jeong, Joonwon Lee, and Seungryoul Maeng.
2013. Demand-based Coordinated Scheduling for SMP VMs. In Proceedings of
the Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’13).

[15] Hwanju Kim, Hyeontaek Lim, Jinkyu Jeong, Heeseung Jo, and Joonwon Lee. 2009.
Task-aware Virtual Machine Scheduling for I/O Performance.. In Proceedings of
the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’09).

[16] Min Lee, A. S. Krishnakumar, P. Krishnan, Navjot Singh, and Shalini Yajnik.
2010. Supporting Soft Real-time Tasks in the Xen Hypervisor. In Proceedings
of the 6th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’10).

[17] Waiman Long. 2014. qspinlock: a 4-byte queue spinlock with PV support. (7 May
2014). Retrieved March 6, 2018 from https://lwn.net/Articles/597672/

[18] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and Gilles Muller.
2012. Remote Core Locking: Migrating Critical-section Execution to Improve the
Performance of Multithreaded Applications. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference (USENIX ATC ’12).

[19] Microsoft. 2017. Symbols for Windows debugging. (23 May 2017). Re-
trievedMarch 6, 2018 fromhttps://docs.microsoft.com/en-us/windows-hardware/
drivers/debugger/symbols

[20] Microsoft. 2018. Microsoft Azure Marketplace. (2018). Retrieved March 6, 2018
from https://azuremarketplace.microsoft.com/en-us/marketplace

[21] Diego Ongaro, Alan L. Cox, and Scott Rixner. 2008. Scheduling I/O in Virtual Ma-
chine Monitors. In Proceedings of the Fourth ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE ’08).

https://sourceware.org/systemtap/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://www.kernel.org/doc/Documentation/locking/lockstat.txt
https://www.kernel.org/doc/Documentation/locking/lockstat.txt
https://cloud.google.com/compute/docs/images
https://lwn.net/Articles/597672/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/symbols
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/symbols
https://azuremarketplace.microsoft.com/en-us/marketplace

EuroSys ’18, April 23–26, 2018, Porto, Portugal J. Ahn et al.

[22] Jiannan Ouyang and John R. Lange. 2013. Preemptable Ticket Spinlocks: Im-
proving Consolidated Performance in the Cloud. In Proceedings of the 9th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE ’13).

[23] Jiannan Ouyang, John R. Lange, and Haoqiang Zheng. 2016. Shoot4U: Using
VMM Assists to Optimize TLB Operations on Preempted vCPUs. In Proceedings
of the12th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’16).

[24] Aravinda Prasad, K Gopinath, and Paul E. McKenney. 2017. The RCU-Reader
Preemption Problem in VMs. In Proceedings of the 2017 USENIX Conference on
Annual Technical Conference (USENIX ATC ’17).

[25] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. 2017. Ffwd: Delegation is
(Much) Faster Than You Think. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17).

[26] Orathai Sukwong and Hyong S. Kim. 2011. Is Co-scheduling Too Expensive for
SMP VMs?. In Proceedings of the Sixth Conference on Computer Systems (EuroSys
’11).

[27] Boris Teabe, Vlad Nitu, Alain Tchana, and Daniel Hagimont. 2017. The Lock
Holder and the Lock Waiter Pre-emption Problems: Nip Them in the Bud Using
Informed Spinlocks (I-Spinlock). In Proceedings of the Twelfth European Conference
on Computer Systems (EuroSys ’17).

[28] Boris Teabe, Alain Tchana, and Daniel Hagimont. 2016. Application-specific
Quantum for Multi-core Platform Scheduler. In Proceedings of the Eleventh Euro-
pean Conference on Computer Systems (EuroSys ’16).

[29] VMware. 2010. VMware vSphere 4: The CPU scheduler in VMware ESX 4.1.
Technical Whitepaper. (12 July 2010).

[30] Philip M. Wells, Koushik Chakraborty, and Gurindar S. Sohi. 2006. Hardware
Support for SpinManagement in Overcommitted Virtual Machines. In Proceedings
of the 15th International Conference on Parallel Architectures and Compilation
Techniques (PACT ’06).

[31] Xen Project wiki. 2016. Cpupools Howto. (9 May 2016). Retrieved March 6, 2018
from https://wiki.xen.org/wiki/Cpupools_Howto

[32] Mark A. Williamson. 2015. Xen Trace. (28 August 2015). Retrieved March 6,
2018 from https://xenbits.xen.org/docs/4.7-testing/man/xentrace.8.html

[33] Cong Xu, Sahan Gamage, Hui Lu, Ramana Kompella, and Dongyan Xu. 2013.
vTurbo: Accelerating Virtual Machine I/O Processing Using Designated Turbo-
sliced Core. In Proceedings of the 2013 USENIX Conference on Annual Technical
Conference (USENIX ATC ’13).

[34] Cong Xu, Sahan Gamage, Pawan N. Rao, Ardalan Kangarlou, Ramana Rao Kom-
pella, and Dongyan Xu. 2012. vSlicer: Latency-aware Virtual Machine Scheduling
via Differentiated-frequency CPU Slicing. In Proceedings of the 21st International
Symposium on High-Performance Parallel and Distributed Computing (HPDC ’12).

https://wiki.xen.org/wiki/Cpupools_Howto
https://xenbits.xen.org/docs/4.7-testing/man/xentrace.8.html

	Abstract
	1 Introduction
	2 Background and Design Approaches
	2.1 Virtual Time Discontinuity Problem
	2.2 Prior Work
	2.3 Design Approaches
	2.4 Comparison with Prior Work

	3 Analysis of Critical OS Services
	3.1 Critical OS Components
	3.2 Critical I/O Path
	3.3 Performance Implication

	4 Design
	4.1 Detecting Critical OS Services
	4.2 Handling Critical Services
	4.3 Adaptive Adjusting of Micro-sliced Cores
	4.4 Discussion

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusions
	References

