DE{CHE D A7 HALEE
ZTE] A AR HRA A

—

A5 Sh

Isahn@korea.ac kr
https://Jeongseob.github.io

2024-03 7|&2=

mailto:jsahn@korea.ac.kr
https://jeongseob.github.io/

HBE A A 017

-

»+ 20244 A EE (2017 712 OF=FCHatwof| M

A
e 0|11 HISE: HIOE| A|AEIS W20 SO 2 MA| 5t HitH Ef1

EuroSys 2023 =& 8T ATC2022 == & H
OIE*EIOrEDf 0= ZA2[ZL|O0}

M (Jeongseob Ahn)

« Associate Professor @ Korea University
« School of Electrical Engineering
« Department of Communication Engineering

* Research Interest
 Computer Systems and Architecture
* Cloud & Datacenter Computing
« Systems for Artificial Intelligence

KAIST migmm ORACLE
* ik Vilk Labs
PhD Research Fellow Researcher Assistant/Associate Professor Associate Professor
® ® e ® *—

Feb. 2015 Feb. 2015 ~ Jan. 2016 Feb. 2016 ~ Jul. 2017 Sep. 2017 ~ Feb. 2024 Mar. 2024 ~ Current

Datacenter / Cloud

Mobile platforms

PC / Desktop

£Y Google Cloud

A Microsoft Azure
O dWS

IBM Cloud

ORACLE

CLOUD

) swusun: Cloud

Expensive: 100s of millions $$ to construct and operate
- Need to build fast and efficient datacenter servers

» =0 A[AE 2 017

T2 MM (CPU/GPU/NPU) #+2

EBA|A, 7t Tl

HY U 24 A2 AAT

=2 = =

O

—

OfJ

A5 AlAs

-

CIOIEHIE / 222 B

.« Y AR (4 X)

7{Ch 2 (0l GPT-3)= HEE 24242 04 20| WRE 51 S5 Hj22| 2Z0| 4243
AFSID WS 22 MU|AS 9f3f C140| GPUS E5H 24 U HHH2| A A 75
ChR2 GPU RS BE2O2 R2|5te A4 U AZEQ 0] 7|2 AT

C B2 LM 2E 232 Ha2l¥ 4 9= 72 Y

© HIZ B8O B Al AE g

- GPU O}Z|&l% O|af] & CUDA =212 AF

* PyTorch ¢

2t =& Fast and Efficient Model Serving Using Multi-GPUs with Direct-Host-Access (EuroSys 23)

Al 2 2EAA 22| &r2| z[Xer

got7| 2ot Hi2e| &el 78 B!

* CIO|EdY 28 Lot 2HAA| & 2t0[E22| +F0|M 2e| 7= S+
- =ct?E BrES 2ot ofO|IHB[O[A 2 EoM 22| 7= A+

&

A =& Exploring the Design Space of Page Management for Multi-Tiered Memory Systems (USENIX ATC 21)

HAAFA 3: NPU & PIM OF7 |EllZ] A A

N GI:T Decoder Layer
P rd)
_\) 5 Decoder Layer ()
7 ~ .
] d‘ Attention MLP
Language Decoder Layer ~) .
— SR T \\ GEMV operations GEMM operations
ode Decoder Layer |\ (Matrix-Vector Mul) (Matrix-Matrix Mul))
\\ Y ,/:-(\\\ — <)
1 Decoder Layer | | -~~~ N RN
J \\ ‘ - ,*1’ \\\ \\N‘x\
4 e - RS
e r
Processing Engine
DRAM Engine CXL.mem
CXL-based Memory Expander with Near GPU
Data Processing Architecture
91T Ui

* LLM 22 7153 28t NPU 2 PIM 7|= A+

Abstract

With the arrival of tiered memory systems comprising various
types of memory, such as DRAM and SCM, the operating
system support for memory management is becoming increas-
ingly important. However, the way that operating systems
currently manage pages was designed under the assumption
that all the memory has the same capabilities based on DRAM.
This oversimplification leads to non-optimal memory usage
in tiered memory systems. This study performs an in-depth
analysis of page management schemes in the current Linux
design extending NUMA to support systems equipped with
both DRAM and SCM (Intel’s DCPMM). In such multi-tiered
memory systems, we find that the critical factor in perfor-
mance is not only the access locality but also the access tier
of memory. When considering both characteristics, there are
several alternatives to page placement. However, current op-
erating systems only prioritize access locality. This paper ex-
plores the design space of page management schemes, called
AutoTiering, to use multi-tiered memory systems effecti

Our evaluation results show that our proposed techniques
can significantly improve performance for various workloads,
compared to the stock Linux kernel, by unlocking the poten-
tial of the multi-tiered memory hierarchy.

1 Introduction

With the advent of in-memory computing, such as data an-
alytics, key-value stores, and graph processing, the demand
for high-density DRAM has been steadily increasing in re-
cent years [27]. However, due to the challenge of scaling
DRAM density, a new class of memory has received atten-
tion o bridge the performance gap between DRAM and SSD.
For example, Intel recently unveiled its non-volatile memory
based on 3D Xpoint technology, called Optane DC Persistent
Memory Module (DCPMY) that provides more density than

services [4,

Exploring the Design Space of Page Management for Multi-Tiered Memory
Systems

Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn
Ajou University

206ds ssaippe [easAld

®DCPNIM
o)

Figure 1: Software-managed tiered memory system aug-
mented on the NUMA architecture

Since modern server systems are built with the Non-
Uniform Memory Access (NUMA) architecture, future large-
memory systems will take the shape of tiered memory aug-
mented on traditional NUMA architecture, called multi-tiered
memory. Figure | presents a real-world multi-tiered memory
system used throughout this study. Each compute chip has two
types of memory: DRAM (upper-t ier) and Intel’'s DCPMM
(lower-tier). We configure both DRAM and DCPMM to
be fully exposed to software as memory.

This paper presents that the recent advancement in
Linux [15] and tiered memory studies [16,20, 35] do not
lead to optimal page placement in multi-tiered memory sys-
tems. As the new class of memory becomes part of the main
‘memory, the critical factor in performance is not only the
access locality but also the access tier of memory. However,
current page placement schemes have been established for
DRAM-only NUMA architecture and only consider locality
between threads and memory [2,8,12,13,21,38]. As a result,
the current design is far from exploiting the potential benefits
of multi-tiered memory systems. For example, suppose the
local DRAM becomes full when promoting pages from the
lower-tier (DCPMM) to the upper-tier (DRAM) memory. In
this case, the current state of the art leaves the page on the
ailability of the remote
ion is reasonable for

there is no difference
lti-tiered memory sys-

ical Conference 715

ARTIFACT
EVALUATED

ARTIFACT ARTIFACT
EVALATED | EVALUATED

epmnx

g g,

Memory Harvesting in Multi-GPU Systems with Hierarchical Unified Virtual

Memory
Sangjin Choi* Taeksoo Kim* Jinwoo Jeong Rachata Ausavarungnirun
KAIST KAIST Ajou University KMUTNB
Myeongjae Jeon Youngjin Kwon Jeongseob Ahn®
UNIST Ajou University
Abstract environments where multiple jobs are running across GPUs

With the ever-growing demands for GPUs, most organizations
allow users to share the multi-GPU servers. However, we
observe that the memory space across GPUs is not effectively
utilized enough when consolidating various workloads that
exhibit highly varying resource demands. This is because
the current memory management techniques were designed
solely for individual GPUs rather than shared multi-GPU
environments.

This study introduces a novel approach to provide an illu-
sion of virtual memory space for GPUs, called hierarchical
unified virtual memory (HUVM), by incorporating the tem-
porarily idle memory of neighbor GPUs. Since modern GPUs
are connected to each other through a fast interconnect, it
provides lower access latency to neighbor GPU’s memory
compared to the host memory via PCle. On top of HUVM,
we design a new memory manager, called memHarvester, o
effectively and efficiently harvest the temporarily available
neighbor GPUs” memory. For diverse consolidation scenarios
with DNN training and graph analytics workloads, our exper-
imental result shows up to 2.71x performance improvement
compared to the prior approach in multi-GPU environments.

1 Introduction

As the demand for GPUs explodes, it is now a common prac-
tice in both academia and industry to equip multiple GPUs in
a single server and make them shareable. Many enterprises
in the industry have built large GPU clusters comprised of
a set of multi-GPU servers to satisfy the demand for a va-
tiety of workloads from deep learning [1, 13, 18,26, 36] to
graph applications [6, 10, 19,31] while saving the infrastruc-
ture cost by sharing. However, as a downside, achieving high
GPU resource efficiency in such multi-GPU servers remains a
challenge. Figure 1 presents that the current memory manage-
ment technique is 1

“Co-first authors
“Corresponding aut nterchangeably.
USENIX Associatid onference 625

ATC ‘22

independently. Although a small amount of memory ranging
from hundreds of MB to a few GB remains idle in one or a
few GPUs, other GPUs under heavy memory pressure rely on
the host memory as a swap device that is significantly slower
than remote GPUs within the same server.

Meanwhile, GPU vendors have faced the challenge of scal-
ing the memory capacity of single GPUs. To overcome the
limited capacity of GPUs, a train of previous studies pro-
vides an illusion of infinite memory space with the host mem-
ory [11,14,17,25,28]. However, none of the work does utilize
the idle memory of neighbor GPUs in commodity multi-GPU
systems. As modern GPU servers are commonly equipped
with 8~16 GPUs connected via high-speed interconnect such
as NVLink, accessing the idle memory of neighbor GPUs
is much faster than that of the host. For instance, NVIDIA
DGX-2 has 16 GPUs with point-to-point connections through
NVLink 3.0, yielding a large pool of 512GB GPU memory
at 600GB/s bidirectional bandwidth [23]. On the other hand,
swapping GPU memory to host DRAM via the latest PCle
4.0 could utilize up to 32GB/s bandwidth only.

In this study, we introduce a new approach providing an
illusion of virtual memory space for GPUs called hierar-
chical unified virtual memory (HUVM) comprised of local
GPU, spare memory of neighbor GPUs, and the host memory.
HUVM opens up a new opportunity for memory virtualiza-
tion by increasing the effective memory space with minimal
performance overhead. When the local GPU memory does
not have free space, HUVM leverages the spare! memory in
neighbor GPUs as a victim cache between the GPU and host
instead of directly swapping out data to the host memory.

However, it is challenging to effectively and efficiently
harvest the spotty-available, small fraction of neighbor GPUS
‘memory because the amount of idle memory is highly variable
and unknown a priori. Beyond the single GPU perspective,

i gmaghcme for modern

to find the best

L)

Fast and Efficient Model Serving Using Multi-GPUs
with Direct-Host-Access

Jinwoo Jeong Seungsu Baek Jeongseob Ahn
‘Ajou University Ajou University Ajou University
Suwon, Korea Suwon, Korea Suwon, Korea

Abstract

As deep learning (DL) inference has been widely adopted for
building user-facing applications in many domains, it is in-
creasingly important for DL inference servers to achieve high
throughput while preserving bounded latency. DL inference
requests can be i ly served if the cor di
model is already in the GPU memory. Otherwise, it needs
to load the model from host to GPU, adding a significant de-
lay to inference. This paper proposes DeepPlan to minimize
inference latency while provisioning DL models from host
to GPU in server environments, First, we take advantage of
the direct-host-access facility provided by commodity
GPUs, allowing access to particular layers of models in the
host memory directly from GPU without loading. Second,
we parallelize model transmission across multiple GPUs to
reduce the time for loading models from host to GPU. We
show that a single inference can achieve a 1.94x speedup
compared with the state-of-the-art pipelining approach for
BERT-Base. When deploying multiple BERT, RoBERTa, and
GPT-2 instances on a DL inference serving system, DeepPlan
shows a significant performance improvement compared to
the pipelining technique and stable 99% tail latency.

CCS Concepts: - Computer systems organization; - Soft-
ware and its engineering — Software system structures;

Keywords: DNN model serving, Direct-host-access, Parallel-
transmission

ACM Reference Format:
Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn. 2023. Fast and
Efficient Model Serving Using Multi-GPUs with Direct-Host-Access.
In Eighteenth European Conference on Computer Systems (EuroSys
'23), May 9-12, 2023, Rome, Italy. ACM, New York, NY, USA, 17 pages
hitps://doi.org/10.1145/3552326.3567508

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys '23, May 9-12, 2023, Rome, Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9487-1/23/05....$15.00
https://doi.org/10.1145/3552326.3567508

1 Introduction

Due to the increasing demand to utilize deep neural networks
(DNNs) in many user-facing applications, it is becoming in-
creasingly important to provide deep learning (DL) inference
with low latency [8, 13, 17, 27]. To serve incoming inference
requests within the strict latency constraints (e.g., service
level objectives), a straightforward approach is to cache mod-
els in the GPU memory, as depicted in Figure 1a. However,
the downside of this approach is that inference servers need
to be over-provisioned for the peak load, increasing the op-
eration cost of servers. A promising way to reduce the cost
of GPU servers is to allow the number of models to extend
beyond the GPU memory limit [20], leading to fewer GPU
servers. Once GPU memory becomes insufficient to add a
new model, we can reclaim the GPU memory space occu-
pied by an inactive model and load the active model. If an
inference request arrives at a model not ready in the GPU
‘memory, it starts loading the corresponding model to GPU
on-demand [34, 37] (Figure 1b). The remaining challenge is
to minimize the (cold-start) time for loading DL models to
GPU memory, which significantly delays inference. For in-
stance, loading a BERT-Base model takes 40ms if the model
is available in host memory, while a single inference on the
‘model cached in the GPU memory is complete within 9.35ms
for NVIDIA V100.

Arecent inspiring study presented populating model trans-
‘mission per layer granularity [6], enabling inference to start
before the entire model is loaded, as shown in Figure 1c. This
approach hides the time for loading layers by overlapping
it with the computation. Since DNN models comprise a se-
quence of layers, we can separate the inference computation
layer-by-layer. Once the first layer is loaded, the inference
starts immediately. While performing the inference on the
first layer, it loads the next layer simultaneously. However, to
make such pipelining technique effective, it is required that
the computation time must be sufficiently longer than the
loading time. Otherwise, the computation cannot proceed
until the corresponding layer is completely loaded, called
pipeline stall. Since recent DNN models such as BERT and
GPT have large layers that take a substantial loading time, it
is challenging to fully overlap such layer loading time with
the computation.

In this study, we explore three techniques to minimize
the performance impact of loading models: executing layers

EURO/SYS

IN EUROPE

ACM SIGOPS

Best Artifact Award @ EuroSys 2023

EuroSys 2023 L 4 - e .
* 5 2 ¢) h . 2 e e .. e
@EuroSys_conf - Follow i S S DA

#eurosys23 GILLES MULLER BEST ARTIFACT AWARD:
Fast and Efficient Model Serving Using Multi-GPUs with
Direct-Host-Access A
Jinwoo Jeong (Ajou University), A 5 The 18th ACM EuroSys artifact evaluation committee is honoured to present
Seungsu Baek (Ajou University), o
Jeongseob Ahn (Ajou University)

Jinwoo Jeong, Seungsu Back, Jeongseob Ahn
Congratulations!

With the Gilles Muller Best Artifact Award for their work entitled

s

e P

Fast and Efficient Model Serving
Using Multi-GPUs with Direct-Host-Access

Daiel G V- &,‘L_ . @/—' G@J‘L\ 4 f".’;_.,‘,

o~
M\ pssocistion for
At Computing Machinery

o ' o Y ': :,?a_h_ RN e
A G A e N T R
cﬁ » ‘,,.4.‘%@*3’5"«@:’35?<'«$~ R R

", e e

Danicle Cono D'Elia, Vincenzo Gulisano, Mathias Payer hn[v.ppg Antonio Di Luna, Leonardo Querzoni

Artcfact cvaluation co-chairs General co-chairs

N

o e A

R
S

: ;:'v'
R

g
o

)

E

e
e,

EIEYIE

- HY T2 2|y

off

22| 0

Stl= 2TEQ|0

—
I

al
=

=[O0

5
« CPU 2 GPUOA

- HE A

29]: sahn@korea.ac kr

mailto:jsahn@korea.ac.kr

ol A o
A2+ I

« 71240 C/C++ =2

227

Of U=l T M Al

nYy
— O

Of

o1

|.

C
o

s sy
11O

ZEE AlA Q1T0] 20| QT 7

T3H OFF0ALE AEHTM R !

H2t2{: [sahn@korea.ac kr

mailto:jsahn@korea.ac.kr

